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MULTIDIMENSIONAL INDICES

" ISTVAN FAZEKAS (Debrecen) and TIBOR TOMACS (Eger)
1. Introduction

Several papers are devoted to the study of the strong law of large numbers for non independent
random variables (see e.g. Révész [11] and Csérgs, Tandori and Totik [1]). Etemadi [2] proved
that the Kolmogorov strong law of large numbers holds for identically distributed and pairwise
independent random variables. Kruglov [9] extended that result and obtained the Marcinkiewicz
strong law of large numbers and Spitzer’s theorem in the pairwise independent case if r < 1.

On the other hand, the strong law of large numbers has been extended to the case where
the index set is the positive integer d-dimensional lattice points (Gut [5], Klesov [8], Fazekas (3]).
Moreover, the assumption of identical distribution can also be weakened. Hu, Méricz and Taylor
[7], Gut [6] and Fazekas [4] used domination of distributions instead of identical distribution.

In this paper the Kolmogorov and the Marcinkiewicz strong laws (if 0 < r < 1) are proved
for pairwise independent identically distributed random variables with multidimensional indices.
Spitzer’s theorem is obtained for pairwise independent dominated random variables with multidi-
mensional indices."Our theorems are extensions of Theorems 1, 2 and 3 of Kruglov [9]. Some parts
of our theorems have been proved in Etemadi [2].

2. Notation and preliminary lemmas

Let N¢ be the positive integer d~dimensional lattice points, where d is a positive integer. For
n,m € N n < m is defined coordinatewise, (n,m] = Hf=1(n,»,m,~] is a d-dimensional rectangle
and |n| = H?d n; where n = (n;,...,n4), m = (my,...,mg). 3, will denote the summation for
allne N% 1=(1,...,1) € N%. I(A) denotes the indicator function of the set A. We shall assume
that random variables (r.v.’s) {Xy,,n € N?} are defined on the same probability space (12,4, P).
The following notation will be used: Sn = Y, ., Xi, X = max{0,X,}, X5 = max{0,-X,}.
Obviously, X = XF — X7, | Xal = X} + X7.

The following two lemmas are proved in Gut {5] and in Fazekas [3].

LEMMA 1. Let X bear.v. Forr > 0andm =0,1,2,... the following statements are equivalent:

1 E (IX (tog* 1X])* ™) < oo,

2) ¥ (n|*"! (log |n|)™ P (|X] > |n|*¢) < oo, for any & > 0, € > 0.
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LEMMA 2. Let {X,,n € N%} be a sequence of identically distributed (i.d.) r.v.’s,0 < r <p<2,
¢ > 0 and define Y, = Xol {|Xa| < en|'/"}. If

E (11" (tog* 1X:) ™) < o,

then R
Z(log|n[)'"El|n|“/’Y,,| <oo for m=0,1,2,....

The following lemma is a variant of Lemma 2.1. of Gut [6]. (See also Lemma 2.7. of Fazekas
(4])-

LEMMA 3. Let {Xp,n € N“} be a sequence of r.v.’s. Suppose that there exists ar.v. X such
that
Z P(|Xy| > z) < cP(|X]>2)
I ]k<n

for all n € N¢, z > 0 and some ¢ > 0. Let p > 0 and define, for A > 0, X,(\) = | Xall {|Xa] > A},
Xa(A) = | Xall {{Xal <A} + AI{[X..! > A} and similarly for X. Then

i 2 E(XZ() < (W), (1)
k<n
and
o LY E(X()® < E(XQ)P. (2)
k<n

PROOF. For a non-negative r.v. Y we have
=]

EY? = p/y"‘lP(Y > y)dy.
0
By this equality and our condition it follows that

1 e 1 YA
mé;E(Xx('\))p = T;Ikzsnpo/y" P(X5(N) > y)dy
A

A
=p [V T POX > )y <5 [ 177 eRX] > )y
° k<n o
= cE(X*(N)).
Therefore (1) is proved. Similarly, (2) follows, since

LS E(X() _,,/ 1 L S p(x(0) > y)dy
ol il &

k<n
A 1 )
2 [y IZl=(lxk|>A)dy+p/ ZP(|Xkr>y)dJ
0 k<n k<n

<p / PLP(X(N) > y)dy = cB(X(\)P.
]



This completes the proof of Lemma 3.

LEMMA 4. Let {X,,n € N} be a sequence of pairwise independent r.v.’s, and let {an, n € N4}
be a sequence of positive numbers. If

{aﬂ-:neN",veV}
Qn

is a bounded set, where V = {v=(1,...,v5) 105 € {0,1}} and

%— — 0 almost surely (s.s.) as |n| — oo,
n

then
E P(|Xal 2 an) < o0.
n

PROOF. This lemma has been proved in Petrov [10] (p. 222) for d = 1. The reader can readily
verify that

So Xa/an — 0 as. as jn} — oo. It implies
P( {IXa| > an} for finitely many values of n) =1

So the lemma follows from Borel-Cantelli lemma for pairwise independent events (see e.g. Petrov
[10] p. 214). This completes the proof of Lemma 4.

LEMMA 5. (Kronecker) Let z, and b, non-negative numbers (n € N?). Suppose that b, < b,
ifmSnandb.,—»ooifln[—»oo.Ifznz,isﬁnitethen :

;—Zbk:kﬁo as |n| — oo,

B k<n

PROOF. For any ¢ > 0 there exists n, € N¢ such that Y zn, < £. Therefore

agfa,

1 1 1 1
0= b= - D bt D ok < - Acte—0
ksn b b

as n| > ocoand ¢ | 0.



3. Results

THEOREM 1. Let {Xn,n € N?} be a sequence of non-negative r.v.’s, and let {b5,n € N7} be
a bounded sequence of non-negative numbers, and B, = 3 by. If

k<n
1 1/r
; |n|P('5"‘B"' > elnf!/7) < 0o 3)
for every ¢ > 0, where 0 < r < 1, then
(Sn —Bn)—0 as. as |n — oo. (4)

|nI1/r

PROOF. Fix a > 1, € > 0, denote the integer part of a™ by k,, (: = 1,...,d) and k, =
(knyy-. - kn,). It follows from the inequalities

kat1 — ka| . 1r
Z |kn+1| kE(:?Eu-l] F (lSk - Bkl > Elkl )

<Y Y wP(se- B> amr)

0 kE(kan knt1]
1
<y =P (|s., - Bal > 51n|1/')
~ |n|
and condition (3) that there exists a sequence my = (my,,...,Mmy,), @™ < m,, < a™* (i =

.,d) such that the series
3P (15m. ~ Bamal > clmal*/") ()
n
converges. By the Borel-Cantelli lemma convergence of the series (5) implies

[rnn’l/rISml Bm,| <k (6)

except for finitely many values of my, a.s. For any t € N? there exists an index n € N¥ such that
t € (my,, my11). By non-negativity of X we have

W(Bm. - Bt) + oy !t}l/r (Sm. - m.) = lt‘l/r (St t)

1 1
< W (Sm-+x - Bmu+1) + W (Bm-+1 - Bt) :

™
Put b = sup b, and observe that
n

od
(-1/m) 3 m
T l/r (Bi — Bm,) < (o™ ~ 1) ba =< (a® - 1) b



and
1

o (Bmays — Be) < (¥ = 1) b,
as 0 < r < 1. In view of the inequality [t~ < a?4/T|\mg 1|7, (6) and (7) give

1

W‘Sg - B;I S ea“/' + (a“ - 1) b

except for finitely many t as. For any § > 0 we can find an € > 0 and an o > 1 such that
£a?4/7 + (a® — 1) b < 6. Therefore (4) is proved.

THEOREM 2. Let {Xn,n € N?} be a sequence of pairwise independent r.v.’s. Assume that
1) sup,, E| Xa| < o0,
2) there exists a r.v. X such that E (|X| (log* |X|)d_l) < oo and

LS p(Xul > 2) < P(IXI>2)
Inl &2
for all n € N¢, z > 0 and some ¢ > 0. Then

IIYI (Sa—ESa) — 0 as. as |n—o0o ®)

and moreover for any £ > 0

Y l—:‘-ipqs.. — ESq| > elnl) < oo. ©)

PROOF. Assumption 1) is not used to prove (9). First we prove (9). Put Ya = Xal {| Xx| < Inl},
k<n Tn=Yycn Y& Remark that pairwise independence of Xy implies that of Yx. Condition 2)
and (1) in Lemma 3 (with A = in|, p = 2) imply the inequality

1S B < cnP(IX] > fnl) + B (X*T{IX]< [nl})
e

Further, we have

1 1 1
‘;anr_:;WzDzYkg;WZEYJ

k<n k<n
<eSP(X|> In)+e Y r,fl—E (X2I{IX] < |nl}).

Obviously

P (|Sa — ETal > €n]) < P ({Ta — ETa| > eln)) + P<U {1 Xl > |n[}).

k<n
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Therefore by the Chebyshev inequality, Lemmma 1 and Lemma 2 we have
> ﬁp(ls.. — ET,| > ¢ln))

<z Z [n|3D2T +Z | > P(IXul > [ni)

k<n
<e (1 +5) LX)+ 55 A (CT{IX] < fu)) < o0

Hence (9) follows, since
rorESn ~ BTal < o 3 Z E(1 Xl {[Xil > Inl})
< cE(IXII{IXI > [n}) — 0

as |n| — oo by (2) in Lemma 3 (with A = |n|, p = 1). Now we turn to (8). It follows from the
equality |Xn| = X} + X and condition 2) that

EP (XE>z)<cP(IX]|>2)

Inl k<n

for all n € N? and z > 0. Therefore (9) holds with X replaced by X} and X . By Theorem 1 it
follows that

Z XE-EXE) -0 as. as [n|— .

lnl k<n

Therefore (8) is proved.

COROLLARY. Let {X,,n € N} be a sequence of pairwise independent i.d. r.v.’s. The following
statements are equivalent:
d-1
1) BiX,| (log* |X1])" " < oo,
2) |n|~18, — ¢ as., where c is some constant,
3) for any ¢ > 0 and some b > 0

Z] | (Z | Xx] - b)

k<n

> 5|n!) < 0.

PROOF. Theorem 2 implies 1)=2) and 1)=3) with b = E|X,|. Implication 2)=1) is a conse-
quence of Lemma 4 and Lemma 1. Now we prove implication 3)=1). By Theorem 1 we have

Z[Xkl-ab as. as |nl — oc.
’k<n

So implication 3)=1) follows from implication 2)=1).
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THEOREM 3. Let {X,,n € N¢} be a sequence of pairwise independent i.d. r.v.’sand 0 < r < 1.
The following statements are equivalent:

1) X, (log* X2)*™ < o0,

2) 3,1 Xal/In|'/" is convergent a.s.,

3) |n|"/'5 — 0 as.,

4) for any € > 0

Z l%l-P(Z [ Xx] > 6|n|‘/') < oo.
n

k<n

PROOF. First we prove implication 3)=>1). By Lemma 4 we have
SR (IXal 2 In") < oo,

So 1) is a consequence of Lemma 1. Implication 4)=3) follows from Theorem 1 (pairwise in-
dependence is not necessary). Now we prove 1)=>2) (pairwise independence is not necessary).
Let Yo = Xol{|Xa] < In|'/"}. Then by Lemma 2 we have 3, E||n|~'/"Y,| < oco. That is
Yo Ini~1/7|Y,| is integrable, so it is finite a.s. By Lemma 1

Y P(Xa#Ya)<oo

therefore Borel~Cantelli lemma implies 2). Implication 2)=>3) is a consequence of the Lemma 5
(pairwise independence is not necessary) So it remains to prove implication 1)=>4). Put Yy =
IXalI{| Xl € 0]/}, k<n, Za= T, Yy and S5 = Z | Xx|. We have

k<n
Z lEYP (10)

an/"

for any 0 < r < p < 2 (see Lemma 2). Fuxther we have

> i (152 - B2al > elal®”")
n
> ﬁP (IZ.. ~ B2l > eln:‘/') +2 r,lqp( U {lel > |n|1/f})
n . A
1 DZ, )
< E |n‘ szlnlzl,. + EP('X,J > 'n|1/ )

<z Z lnl’/r + 2P (1%l 2 al'7) < o

Here we used Lemma 1 and (10) with p = 2. By (10) it follows that for any £ > 0 there exists an
m, € N¢ such that

1/r
ol InI /
K m £ m, then )
EY, EYm _ EZm
€> E(Zz ] In‘llr 2 2d/r|n‘ll/r - 2d/r|rnil/r’

so [nj~Y/"EZ, — 0 as {n| — oo. Hence 4) follows.
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