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8. Summary

In Chapter 2 of the dissertation we study Kolmogorov and Marcin-
kiewicz—Zygmund type strong laws of large numbers (SLLN’s). Here Kol-
mogorov’s SLLN is proved for pairwise independent weakly mean dominated
random variables with multidimensional indices. Petrov showed in 1987 that
the Marcinkiewicz SLLN holds for identically distributed random variables
with arbitrary dependence structure, if 0 < r < 1. We prove it for non-
independent, weakly mean dominated random fields (0 < r < 1). Moreover
we give a proof of Spitzer’s theorem with similar assumptions.

There is an approach to prove the SLLN which uses directly a maxi-
mal inequality for normed sums. Inequalities of this kind are said to be of
Hájek—Rényi type. They are not easy to obtain, but after the proof of the
SLLN becomes an obvious problem. Fazekas and Klesov showed in 2000 that
a Hájek—Rényi type inequality is a consequence of an appropriate maximal
inequality for cumulative sums and the latter automatically implies the
SLLN for sequences of random variables. In these results it is important that
there are no restrictions on the dependence structure of random variables. In
Chapter 3 we generalize these theorems for random fields. Several examples
of applications are given in this chapter as well:
— An SLLN for logarithmically weighted sums. (We remark that such kind

of SLLN’s can be useful to prove almost sure central limit theorems.)
— A Marcinkiewicz—Zygmund type SLLN for random fields with super-

additive moment structure.
— Brunk—Prohorov type theorems.

In Chapter 4 we study convergence rates in the laws of large numbers
for general arrays of Banach space valued random elements. Some of our
results are new for real variables, too. The main result is a generalization
of a theorem of Jain, wich was published in 1975. The idea of the proof of
the main theorem is the following. When we apply Hoffmann—Jørgensen’s
inequality, we use two different functions to obtain upper bounds for the
two terms in the inequality. This theorem seems to be difficult, but when we
choose appropriate weight functions we can obtain several known theorems
for general arrays. We specialize our result for Banach spaces with some
geometric property. Then we obtain new proofs for some results of Fazekas
(1992) and Hu, Rosalsky, Szynal and Volodin (1999).

In Chapter 5 we study almost sure central limit theorems for random
fields. In this topic Fazekas and Rychlik proved a general theorem in 2002. In
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this chapter applying this result we prove an almost sure central limit the-
orem in so-called m-dependent case. For this reason we need a central limit
theorem for m-dependent random fields, which was published by Prakasa
Rao in 1981.

In Chapter 6 we give a version of Rosenthal’s inequality for α-mixing
fields. Rosenthal’s inequalities are important tools to prove consistency of
some estimators for weakly dependent random processes and fields. The
first version of such inequalities was proved by Rosenthal in 1970 for in-
dependent random variables. Rosenthal’s inequalities for mixing sequences
were presented by Utev in 1984 and for mixing fields by Doukhan in 1994.
However, Doukhan remarked that the proof of the interpolation lemma of
Utev is “not clear”. So the extension of Rosenthal’s inequality from posi-
tive even integer exponents to arbitrary positive real exponents is an open
problem. On the other hand, Doukhan presented Rosenthal’s inequalities
for α-mixing and for ϕ-mixing fields. Unfortunately, there is a gap in the
proof of Doukhan. We want to summarize what is clear in the above men-
tioned proofs. Detailed proofs are given in the α-mixing case. The results
and proofs of this chapter are slight modifications of the ones in Doukhan
and Utev, however assumptions here are stronger than those in Doukhan’s
theorem.




