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ABSTRACT

Let {Xn}n≥1 be either a sequence of arbitrary random variables, or a
martingale difference sequence, or a centred sequencewith a suitable
level of negative dependence.Weprove Baum–Katz type theorems by
only assuming that the variables Xn satisfy a uniform moment bound
condition. We also prove that this condition is best possible even
for sequences of centred, independent random variables. This leads
to Marcinkiewicz–Zygmund type strong laws of large numbers with
estimate for the rate of convergence.
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1. Introduction

1.1. Motivation and related results

Let {Xn}n≥1 be a sequence of random variables, we always assume that they are defined on
the same probability space. For all n ∈ N

+ let Sn = ∑n
i=1 Xi andMn = max1≤i≤n |Si|. For

some positive parameters p, r consider the statement

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞ for all ε > 0, (M)

and the weaker claim

∞∑
n=1

np/r−2
P (|Sn| > εn1/r) < ∞ for all ε > 0. (S)

The main goal of the paper is to prove (M) or (S) under different conditions. We may
assume that 0 < r < 2 and p ≥ r. Indeed, if p < r then (M) trivially holds. If p ≥ r ≥ 2
then by the central limit theorem the sum in (S) is divergent for all ε > 0 even if {Xn}n≥1
is an i.i.d. sequence with mean zero and finite variance.
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We cite the known results in this subsection, for the new ones see Section 1.2. First
consider the classical results for i.i.d. random variables. Following Hsu and Robbins [13]
we say that a sequence {Xn}n≥1 converges completely to 0 if

∞∑
n=1

P (|Xn| > ε) < ∞ for all ε > 0.

By the Borel–Cantelli Lemma this implies that Xn → 0 almost surely, but the converse
is not necessarily true. If {Xn}n≥1 is a centred i.i.d. sequence of random variables then
Sn/n → 0 almost surely by the strong law of large numbers. Under what conditions
does Sn/n converge completely to 0? Hsu and Robbins [13] showed that E (X2

1 ) < ∞ is
sufficient, and Erdős [10,11] proved that it is necessary.

Theorem 1.1 (Hsu–Robbins–Erdős strong law of large numbers): Let {Xn}n≥1 be a
sequence of centred i.i.d. random variables. Then the following are equivalent:

(i) E (X2
1 ) < ∞,

(ii)
∑∞

n=1 P (|Sn| > εn) < ∞ for all ε > 0.

A more general classical theorem is the following.

Theorem 1.2 (Baum–Katz, Chow): Let {Xn}n≥1 be a sequence of i.i.d. random variables.
Let 0 < r < 2 and let p ≥ r. The following statements are equivalent:

E (|X1|p) < ∞ and if p ≥ 1 then E (X1) = 0, (1)
∞∑
n=1

np/r−2
P (|Sn| > εn1/r) < ∞ for all ε > 0, (2)

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞ for all ε > 0. (3)

The equivalence of (1) and (2) in the case r = p = 1 is due to Spitzer [24], the case
r = 1, p = 2 is the Hsu–Robbins–Erdős strong law, while the general case is due to Baum
and Katz [2]. For the equivalence of (1) and (3) see Chow [5].

The next theorem is theMarcinkiewicz–Zygmund strong law of large numbers, see [20].
Note that the case p = 1 dates back to Kolmogorov [15] and includes the classical strong
law of large numbers.

Theorem 1.3 (Marcinkiewicz–Zygmund strong law of large numbers): For an i.i.d.
sequence of random variables {Xn}n≥1 and 0 < p < 2 the following are equivalent:

(i) E (|X1|p) < ∞ and if p ≥ 1 then E (X1) = 0,
(ii) limn→∞ n−1/pSn = 0 almost surely.

The following statement explains the connection between Theorem 1.2 and the
Marcinkiewicz–Zygmund strong law of large numbers and its rate of convergence. It
is formulated for arbitrary sequences of random variables, see [7, Remarks 1 and 2] and
see also [17, Lemma 4] for the proof of part (ii).
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Statement 1.4: Let {Xn}n≥1 be an arbitrary sequence of random variables, let 0 < r < 2
and let p ≥ r. Assume that (M) holds.

(i) If p = r then for all ε > 0 we have

∞∑
n=1

P (M2n > ε2n/p) < ∞,

which implies that limn→∞ n−1/pSn = 0 almost surely.
(ii) If p > r then for all ε > 0 we have

∞∑
n=1

np/r−2
P

(
sup
k≥n

k−1/r |Sk| > ε

)
< ∞.

Since the above probabilities are non-increasing, we obtain that

P

(
sup
k≥n

k−1/r |Sk| > ε

)
= o(n1−p/r) as n → ∞.

In contrast to Theorems 1.2 and 1.3, we will not assume independence or identical
distributions in the following. Now we summarize the known results in this direction,
which requires some technical definitions.

The following theorem partly generalizes the Marcinkiewicz–Zygmund strong law of
large numbers, see Stout [27, Theorem 3.3.9] and [27, Corollary 3.3.5]. It is based on
Chung [6] in the case of independent variables and is implicitly contained in Loève [19].
Its proof uses a conditional three series theorem [27, Theorem 2.8.8].

Theorem 1.5 (Stout): Let f : [0,∞) → R
+ be a non-decreasing function with

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < p < 2. Let {Xn}n≥1 be

(i) an arbitrary sequence of random variables if 0 < p < 1 and suppose that
x �→ xp−1f (x) is non-increasing,

(ii) a martingale difference sequence (MDS) if 1 ≤ p < 2 and assume that x �→ xp−2f (x)
is non-increasing.

If supn≥1 E (|Xn|pf (|Xn|)) < ∞ then limn→∞ n−1/pSn = 0 almost surely.

Definition 1.6: We say that the sequence {Xn}n≥1 is weakly dominated by a random
variable X if there is a constant C ∈ R

+ such that for all n ∈ N
+ and x > 0 we have

P (|Xn| > x) ≤ C P (|X| > x), (WD)
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and weakly mean dominated if

1
n

n∑
k=1

P (|Xk| > x) ≤ C P (|X| > x) (WMD)

for some C ∈ R
+ and for all n ∈ N

+ and x > 0.
The following definition was introduced by Alam and Saxena [1] and Joag-Dev and

Proschan [14].
Definition 1.7: A finite family of random variables {Xi : 1 ≤ i ≤ n} is called negatively
associated (NA) if for every pair of disjoint subsets A1, A2 ⊂ {1, . . . , n} we have

Cov (f1(Xi : i ∈ A1), f2(Xj : j ∈ A2)) ≤ 0

for all coordinatewise non-decreasing functions f1 and f2 for which the covariance exists.
An infinite family of random variables is NA if every finite subfamily is NA.

The following definition is due to Lehmann [18].
Definition 1.8: Two random variables X and Y are called negatively quadrant dependent
(NQD) if for all x, y ∈ R we have

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x) P (Y ≤ y).

Every independent sequence is NA, and each pairwise independent sequence is pairwise
NQD. It is proved in [14] that every NA sequence is pairwise NQD. For the next theorem
see Kuczmaszewska [16, Theorem 2.1] and its proof.

Theorem 1.9 (Kuczmaszewska): Let 0 < r < 2 and p > r. Assume that the sequence
{Xn}n≥1 is weakly mean dominated by a random variable X satisfying E (|X|p) < ∞. If
p > 1 assume that {Xn}n≥1 is centred and NA. Then (M) holds.

Remark 1.10: If p = 1 we obtain the above theorem by applying the Markov inequality
P (Z > t) ≤ E (Zq)/tq at the beginning of [16, (2.4)] for some q > 1.

For the following theorem see Tan et al. [28, Theorems 1.1, 1.2], and see also Gan and
Chen [12, Theorem 2.2] for the second part of the statement. Note that it is strongly based
on the pioneering work of Wu [29].

Theorem 1.11 (Wu, Tan–Wang–Zhang, Gan–Chen): Let 0 < r ≤ p and 1 ≤ p < 2.
Let {Xn}n≥1 be a centred, pairwise NQD sequence which is weakly dominated by a random
variable X with E (|X|p) < ∞. Then (S) holds. If r 	= p then (M) holds.

Now we state the last two results of this subsection, which consider MDS. Miao,
Yang, and Stoica [21, Theorems 2.1 (1), 2.3] proved the following theorem about the case
1 ≤ p < 2.

Theorem 1.12 (Miao–Yang–Stoica): Assume that 0 < r ≤ p < 2. Let {Xn}n≥1 be a MDS
which is weakly mean dominated by X. Property (M) holds if

(i) r = p = 1 and E (|X| log+ |X|) < ∞,
(ii) 1 < p < 2 and E (|X|p) < ∞.
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Remark 1.13: Note that (i) is optimal: Elton [9] proved that if X is a centred random
variable with E (|X| log+ |X|) = ∞ then there is a MDS {Xn}n≥1 such that Xn and X have
the same distribution for all n and Sn/n → ∞ as n → ∞ almost surely. Thus (M) cannot
hold by Statement 1.4(i).

The above theorem generalizes a result of Dedecker and Merlevéde [7, Theorem 5] for
real valued random variables. In the case p ≥ 2 a new phenomenon emerges. For the
following theorem see the proofs of [21, Theorems 2.2, 2.4 (3)].

Theorem 1.14 (Miao–Yang–Stoica): Let 0 < r < 2 ≤ p and q(r, p) = 2(p − r)/(2 − r).
Let {Xn}n≥1 be a MDS such that supn≥1 E (|Xn|q) < ∞.

(i) If q > q(r, p) then (M) holds.
(ii) If q = q(p, r) then there is a MDS {Xn}n≥1 which is weakly dominated by a random

variable X satisfying E (|X|q) < ∞ such that (S) does not hold.

1.2. The results of the paper

Thegoal of the paper is to investigate statements (M) and (S) for arbitrary randomvariables,
MDS, and centred sequences with a certain level of negative dependence. We will deduce
(M) by assuming only a uniform moment condition supn≥1 E (|Xn|qf (|Xn|)) < ∞, so
in contrast to Theorems 1.9, 1.11, and 1.12 properties (WD) and (WMD) will not be
assumed. We will find the smallest possible suitable constant q = q(p, r) which we call
the critical exponent. In particular, we generalize Theorems 1.14 and 1.5. We will be also
able to determine the precise smaller order term f . Similarly to Theorem 1.5 the function
f : [0,∞) → R

+ might be any non-decreasing function satisfying
∑∞

n=1 1/f (2
n) < ∞,

and thefiniteness of the sum is really necessary even for (S). ByCorollary 3.2wemay assume
that f (n) = no(1) as n → ∞, see also Remark 1.18 for the least possible order of magnitude
of f . Stoica claimed similar theorems for MDS in [25,26], but those results are incorrect.
He stated in [25] that if 0 < r < 2 < p and {Xn}n≥1 is a MDS with supn≥1 E (|Xn|p) < ∞
then (S) holds. This was disproved in [24], see Theorem 1.14. Theorems 1 and 2 in [26]
state that if 1 ≤ r ≤ p < 2 and {Xn}n≥1 is a MDS with supn≥1 E (|Xn|p log+ |Xn|) < ∞
then (S) holds. Theorem 6.5 below witnesses that this is not true even for independent,
centred sequences of random variables.

The following theorem is one of the most important results in the paper.
Theorem 1.15: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r < 2 and let p ≥ r. Let {Xn}n≥1 be a

(i) sequence of arbitrary random variables if 0 < r ≤ p ≤ 1 and r < 1,
(ii) MDS if 1 < p ≤ 2 or r = p = 1,
(iii) centred, negatively associated sequence of random variables if p ≥ 2.
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If supn≥1 E (|Xn|pf (|Xn|)) < ∞ then for all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

Wewill prove the above theorem in several steps. Theorem 4.1 implies (i), Theorems 5.1
and 5.2 yield (ii), and (iii) is stated as Theorem 6.1.

The next theorem is analogous to Theorem 1.11 with a similar proof. Thus, instead of
proving it, we suggest the reader to follow [28, Theorems 1.1, 1.2].
Theorem 1.16: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r ≤ p and 1 ≤ p < 2. If {Xn}n≥1 is a centred, pairwise NQD sequence with
supn≥1 E (|Xn|pf (|Xn|)) < ∞ then (S) holds. If r 	= p then (M) holds, too.

The following theorem shows that the moment conditions above are sharp even for
independent, centred random variables, even if r = p and we want to obtain only
limn→∞ n−1/pSn = 0 almost surely, recall Statement 1.4(i).
Theorem 6.5: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

= ∞.

Let 0 < r < 2 and let p ≥ r. Then there exists a sequence of independent, centred random
variables {Xn}n≥1 such that supn≥1 E (|Xn|pf (|Xn|)) < ∞ and

∞∑
n=1

np/r−2
P (|Sn| > n1/r) = ∞.

Moreover, if r = p then lim supn→∞ n−1/pSn ≥ 1 almost surely.
First consider Theorem 1.15(i). In the case of arbitrary random variables we need to

suppose that r < 1. Indeed, for 1 ≤ r ≤ p let Xn ≡ 1 for all n. Then supn≥1 E (|Xn|q) = 1
for all q > 0 but

∞∑
n=1

np/r−2
P (|Sn| > (1/2)n1/r) =

∞∑
n=1

np/r−2 ≥
∞∑
n=1

n−1 = ∞.

Theorem 1.15(i) easily follows from the following, more general theorem.
Theorem 4.1: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.
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Let 0 < r < 1 and let p ≥ r, and define q = q(r, p) = max{p, (p− r)/(1− r)}. Assume that
{Xn}n≥1 is a sequence of random variables with supn≥1 E (|Xn|qf (|Xn|)) < ∞. Then for all
ε > 0 we have ∞∑

n=1

np/r−2
P (Mn > εn1/r) < ∞.

We prove that the above theorem is sharp. By Theorem 6.5 it is enough to consider the
case p ≥ 1.
Theorem 4.2: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

= ∞.

Let 0 < r < 1 ≤ p and let q = q(r, p) = (p− r)/(1− r). Then there is a sequence of random
variables {Xn}n≥1 such that supn≥1 E (|Xn|qf (|Xn|)) < ∞ and

∞∑
n=1

np/r−2
P (|Sn| > n1/r) = ∞.

We prove Theorem 1.15(ii) for p < 2 as Theorem 5.1. We follow the strategy of the
proof of [7, Appendix A.1]. Theorem 4.2 yields that Theorem 1.15(ii) does not remain true
for arbitrary random variables.

The following theorems handle MDS in the case p ≥ 2. In particular, the next theorem
proves Theorem 1.15(ii) for p = 2.
Theorem 5.2: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r < 2 ≤ p and let q = q(r, p) = 2(p − r)/(2 − r). Let {Xn}n≥1 be a MDS such that
supn≥1 E (|Xn|qf (|Xn|)) < ∞. Then for all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

The following theorem witnesses that the above result is best possible.
Theorem 5.4: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

= ∞.

Let 0 < r < 2 ≤ p and let q = q(r, p) = 2(p − r)/(2 − r). Then there is a MDS {Xn}n≥1
such that supn≥1 E (|Xn|qf (|Xn|)) < ∞ and

∞∑
n=1

np/r−2
P (|Sn| > n1/r) = ∞.
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Table 1. The critical exponents for different intervals of p and types of sequences. ICS denotes
independent, centred sequences, and MDS, respectively.

ICS MDS Arbitrary sequences

p ≤ 1 p p p if r < 1
1 < p ≤ 2 p p (p − r)/(1 − r) if r < 1
p > 2 p 2(p − r)/(2 − r) (p − r)/(1 − r) if r < 1

Miao et al. proved that the threshold in Theorems 5.2 and 5.4 is at
q(r, p) = 2(p − r)/(2 − r), recall Theorem 1.14. We will improve their methods in order
to find the precise smaller order term.

Theorem 1.15(iii) is stated as Theorem 6.1, which will simply follow from an inequality
of Shao [23]. If 0 < r < 1 then we can remove the assumption that {Xn}n≥1 is centred from
Theorems 1.16 and 6.1.
Corollary 6.3: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r < 1 ≤ p, and let {Xn}n≥1 be a sequence of

(1) pairwise NQD random variables if 1 ≤ p < 2,
(2) negatively associated random variables if p ≥ 2.

Assume that supn≥1 E (|Xn|pf (|Xn|)) < ∞. Then for all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

The above theorems witness that if 0 < r < 2 < p then the critical exponents for
independent centred sequences and MDS are different, since p < 2(p − r)/(2 − r). See
Table 1 for the values of the critical exponents.

We do not know much about pairwise independent random variables if p ≥ 2.
Problem 1.17: Let 0 < r < 2 ≤ p and let k ≥ 2 be an integer. Let {Xn}n≥1 be a sequence of
k-wise independent, centred random variables. Do there exist results similar to Theorem 5.2
(replace Mn by |Sn| if necessary) and Theorem 5.4 with some q = q(r, p, k)? If yes, is it true
that q(r, p, k) = p for all r, p, k?

In fact, for some values of r, p, k we can show that q(r, p, k) = p is the critical exponent
for (S). The following remark is about the least possible order of magnitude of f in the
above theorems.
Remark 1.18: Let log+ (x) = max{1, log x} for x > 0 and log+ (0) = 1. For k ∈ N

+ let
log+

k (x) denote the kth iteration of log+ (x). For m ∈ N
+ and ε > 0 define the functions

fm, fm,ε : [0,∞) → R
+ as

fm(x) =
m∏
k=1

log+
k (x),

fm,ε(x) = fm(x)
(
log+

m (x)
)ε

.
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It is easy to see that for allm ∈ N
+ and ε > 0 we have

∞∑
n=1

1
fm(2n)

= ∞ and
∞∑
n=1

1
fm,ε(2n)

< ∞.

In Section 2 we recall some definitions and easy facts. In Section 3 we prove a number
of technical lemmas. Section 4 is devoted to arbitrary random variables. In Section 5 we
prove our theorems about MDS. Finally, in Section 6 we verify Theorems 6.1 and 6.5, and
Corollary 6.3. Note that the proofs after Section 3 can be read independently of each other.

2. Preliminaries

Let {Xn}n≥1 be a sequence of random variables defined on the probability space (�,F ,P ).
It is a MDS if there is a filtration {Fn}n≥0 such that F0 = {∅,�}, Xn is measurable with
respect to Fn, and E (Xn |Fn−1) = 0 for all n ∈ N

+. We may assume without loss
of generality that Fn = σ(X1, . . . ,Xn) is the σ -algebra generated by X1, . . . ,Xn for all
n ∈ N

+. A random variable is called centred if E (X) = 0.
Let E ⊂ R and let f : E → R. We say that f is non-decreasing (or increasing) if for all

x, y ∈ E, x < y we have f (x) ≤ f (y) (or f (x) < f (y)). We can similarly define the notions
non-increasing and decreasing, and if E = N

+ then our definitions extend to sequences as
well. Let I(A) denote the indicator function of an event A. We use the notation a � b if
a ≤ cb with some c ∈ R

+, where c depends only on earlier fixed constants. The notation
an = o(bn) as n → ∞ means that limn→∞ an/bn = 0. We need the following facts.
Fact 2.1: Let f : [0,∞) → R

+ be anon-decreasing function. Then the following statements
are equivalent:

(i)
∑∞

n=1 1/f (2
cn) < ∞ for some c > 0,

(ii)
∑∞

n=1 1/f (ε2
cn) < ∞ for all ε, c > 0,

(iii)
∑∞

n=1 1/(nf (n
c)) < ∞ for some c > 0,

(iv)
∑∞

n=1 1/(nf (εn
c)) < ∞ for all ε, c > 0.

The equivalence (i) ⇔ (iii) above follows from the equiconvergence of the series∑∞
n=1 an and

∑∞
n=1 2

na2n for any non-increasing, positive sequence {an}n≥1. Easy com-
parison implies the equivalences (i) ⇔ (ii) and (iii) ⇔ (iv).
Fact 2.2: Let {Xn}n≥1 be a sequence of random variables and let g , h : [0,∞) → R

+ be
non-decreasing functions such that

lim sup
x→∞

h(x)
g(x)

< ∞.

Then supn≥1 E (g(|Xn|)) < ∞ implies that supn≥1 E (h(|Xn|)) < ∞.
The concept of martingale and the following inequality are due to J.L. Doob, see e.g. [8,

Theorem 5.4.2].

Theorem 2.3 (Doob’s inequality): Let {Xi : 1 ≤ i ≤ n} be a finite MDS and let p ≥ 1.
Then for all t > 0 we have

P (Mn ≥ t) ≤ E (|Sn|p)
tp

.
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3. Technical lemmas

Lemma 3.1: Let {an}n≥1 be a positive, non-increasing sequence such that

∞∑
n=1

an < ∞.

Then there is a non-increasing sequence {bn}n≥1 such that

(1) bn ≥ an for all n ≥ 1,
(2) limn→∞ bn/bn−1 = 1,
(3)

∑∞
n=1 bn < ∞.

Proof: Fix a positive sequence {ck}k≥1 such that ck ↗ 1. We can choose an increasing
sequence of positive integers {nk}k≥1 such that for all k ∈ N

+ we have

∞∑
n=nk

an < 2−k(1 − ck+1) (3.1)

and
cnk+1−nk
k ≤ 2−k(1 − ck+1). (3.2)

We will construct bn recursively. Let bn = an if n ≤ n1. For every k ∈ N
+ and

nk < n ≤ nk+1 define
bn = max{an, ckbn−1}.

Then clearly (1) holds and bn ≤ bn−1 for all n ≤ n1. Assume nk < n ≤ nk+1 for some k.
Then an ≤ an−1 ≤ bn−1 and our definition imply that

bn = max{an, ckbn−1} ≤ max{bn−1, ckbn−1} = bn−1,

so bn is non-increasing.
Now we show (2). Assume that n > nk. Let nm < n ≤ nm+1 for some m ≥ k. As the

sequence ck is monotone increasing, we have

ckbn−1 ≤ cmbn−1 ≤ bn ≤ bn−1,

so ck ≤ bn/bn−1 ≤ 1. Then ck ↗ 1 yields (2).
Finally, we prove (3). For all n ≥ n1 define dn,n = an and for i ≥ n + 1 recursively

define
dn,i = ckdn,i−1 if nk < i ≤ nk+1.

Let � ≥ n1 be fixed. Let n = n(�) be the largest integer such that n1 ≤ n ≤ � and bn = an.
As bn1 = an1 , we obtain that n exists. Then b� = dn,� by our definitions. As the map
� �→ dn(�),� is clearly one-to-one, we have

∑
n≥n1

bn ≤
∑
n≥n1

∞∑
i=n

dn,i. (3.3)
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Fix k, n ∈ N
+ such that nk < n ≤ nk+1. By definition

nk+2∑
i=n

dn,i = an

(nk+1−n∑
i=0

cik + cnk+1−n
k

nk+2−nk+1∑
i=1

cik+1

)
(3.4)

≤ an
(

1
1 − ck

+ 1
1 − ck+1

)
≤ 2an

1 − ck+1
.

For each j ≥ 2 the definition of dn,i and (3.2) imply that

nk+j+1∑
i=nk+j+1

dn,i = anc
nk+1−n
k

⎛
⎝j−1∏

i=1

cnk+i+1−nk+i
k+i

⎞
⎠ nk+j+1−nk+j∑

�=1

c�k+j (3.5)

≤ anc
nk+j−nk+j−1
k+j−1 (1 − ck+j)

−1 ≤ an2−k−j+1.

By (3.4) and (3.5) for all n ≥ n1 we obtain

∞∑
i=n

dn,i ≤ 2an
1 − ck+1

+ an
∞∑
j=2

2−k−j+1 ≤ 3an
1 − ck+1

. (3.6)

Therefore (3.3), (3.6), and (3.1) imply that

∑
n≥n1

bn ≤
∞∑
k=1

nk+1∑
n=nk+1

∞∑
i=n

dn,i ≤
∞∑
k=1

nk+1∑
n=nk+1

3an
1 − ck+1

≤ 3
∞∑
k=1

2−k < ∞.

Thus (3) holds, and the proof is complete.

Corollary 3.2: Let g : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
g(2n)

< ∞.

Then there is a non-decreasing function f : [0,∞) → R
+ such that

(i)
∑∞

n=1 1/f (2
n) < ∞,

(ii) limn→∞ f (2n+1)/f (2n) = 1,
(iii) lim supx→∞ f (x)/g(x) ≤ 1.

Proof: First we define f (2n) for all n ∈ N
+. We apply Lemma 3.1 for the sequence

an = 1/g(2n), let {bn}n≥1 be a sequence satisfying properties (1)–(3) in Lemma 3.1. Define
f (2n) = 1/bn for all n ∈ N

+. Then (i) holds by (3), and by (2) for all n we have

lim
n→∞

f (2n+1)

f (2n)
= lim

n→∞
bn
bn+1

= 1, (3.7)

so (ii) is satisfied. Since bn is non-increasing, the sequence {f (2n)}n≥1 is non-decreasing.
Let f : [0,∞) → R

+ be any non-decreasing function extending the sequence {f (2n)}n≥1.
Clearly for all n ∈ N

+ we have
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f (2n) = 1
bn

≤ 1
an

= g(2n). (3.8)

Thus monotonicity, (3.8), and (3.7) imply that for all n ∈ N
+ and 2n ≤ x ≤ 2n+1 we have

f (x)
g(x)

≤ f (2n+1)

g(2n)
≤ f (2n+1)

f (2n)
→ 1

as n → ∞. The proof is complete.

Lemma 3.3: Let g : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
g(2n)

< ∞.

Then there is a non-decreasing function f : [0,∞) → R
+ such that

(i)
∑∞

n=1 1/f (2
n) < ∞,

(ii) limn→∞ f (2n+1)/f (2n) = 1,
(iii) lim supx→∞ f (x)/g(x) ≤ 1,
(iv) f has continuous second derivative on (0,∞),
(v) f ′(x)/f (x) = o(1/x) as x → ∞,
(vi) f ′′(x)/f (x) = o(1/x2) as x → ∞.

Proof: By Corollary 3.2 we may assume that

lim
n→∞

g(2n+1)

g(2n)
= 1. (3.9)

Let f (2n) = g(2n) for all n ∈ N
+, then clearly (1) and (ii) hold. Each non-decreasing

function f : [0,∞) → R
+ extending the sequence {f (2n)}n≥1 satisfies (iii). Indeed, mono-

tonicity, f (2n+1) = g(2n+1), and (3.9) imply that for every n ∈ N
+ and 2n ≤ x ≤ 2n+1 we

have
f (x)
g(x)

≤ f (2n+1)

g(2n)
= g(2n+1)

g(2n)
→ 1

as n → ∞.
Let f (x) = f (2) for 0 ≤ x ≤ 2, and let n ∈ N

+ be fixed. For 0 ≤ x ≤ 2n define

rn(x) = qn(1 − cos (21−nπx)),

and let us define
f (2n + x) = f (2n) +

∫ x

0
rn(t) dt.

Then clearly

f (2n+1) − f (2n) =
∫ 2n

0
rn(t) dt = 2nqn,

so
qn = 2−n(f (2n+1) − f (2n)). (3.10)
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Since rn(x) ≥ 0 for all n ∈ N
+ and 0 ≤ x ≤ 2n, the function f is non-decreasing. As

rn(0) = rn(2n) = 0, we obtain that f is continuously differentiable such that f ′(x) = 0 if
0 < x ≤ 2 and f ′(2n + x) = rn(x) for all n ∈ N

+. It is easy to see that f ′′(2n) = 0 for
all n ∈ N

+, so the formula of f ′(x) implies that f ′ is continuously differentiable, thus (iv)
holds. Let n ∈ N

+ and 0 ≤ x ≤ 2n. Then rn(x) ≤ 2qn, (3.10), and (ii) yield that

f ′(2n + x)
f (2n + x)

= rn(x)
f (2n + x)

≤ 21−n f (2
n+1) − f (2n)
f (2n + x)

≤ 4
2n + x

f (2n+1) − f (2n)
f (2n)

= o
(

1
2n + x

)

as n → ∞, hence (v) is satisfied. Let n ∈ N
+ and 0 ≤ x ≤ 2n. Clearly

|r′n(x)| ≤ 21−2nπ(f (2n+1) − f (2n)),

so (ii) implies that

|f ′′(2n + x)|
f (2n + x)

= |r′n(x)|
f (2n + x)

≤ 21−2nπ
f (2n+1) − f (2n)

f (2n + x)

≤ 8π
(2n + x)2

f (2n+1) − f (2n)
f (2n)

= o
(

1
(2n + x)2

)

as n → ∞, so (vi) holds. The proof is complete.

Corollary 3.4: Let g : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
g(2n)

< ∞.

Then there is a non-decreasing function f : [0,∞) → R
+ such that

(1)
∑∞

n=1 1/f (2
n) < ∞,

(2) limn→∞ f (2n+1)/f (2n) = 1,
(3) lim supx→∞ f (x)/g(x) ≤ 1,
(4) for all c > 0 there is an Rc > 0 such that the function hc(x) = x−cf (x) is decreasing

for x ≥ Rc,
(5) for all 0 < p < 1 there is a concave increasing function gp : [0,∞) → R

+ and Np > 0
such that gp(x) = xpf (x) for all x ≥ Np,

(6) for all q > 1 there is a convex increasing function gq : [0,∞) → R
+ and Nq > 0 such

that gq is affine on [0,Nq] and gq(x) = xqf (x) for all x ≥ Nq.

Proof: Let us choose a non-decreasing function f : [0,∞) → R
+ for which properties

(1)–(vi) of Lemma 3.3 hold. Then clearly f satisfies (1), (2), and (3). First we prove property
(4). By (v) of Lemma 3.3 we have

h′
c(x) = −cx−c−1f (x) + x−cf ′(x) = x−c−1f (x)( − c + o(1)) < 0

if x ≥ Rc with some constant Rc > 0, which proves (4).
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Now we show (5). Let fp(x) = xpf (x), using (v) and (vi) of Lemma 3.3 we obtain that

f ′′
p (x) = p(p − 1)xp−2f (x) + 2pxp−1f ′(x) + xpf ′′(x) (3.11)

= xp−2f (x)(p(p − 1) + o(1)) < 0

if x ≥ Kp with some Kp > 0. By (v) of Lemma 3.3 we obtain that

f ′
p(x)
fp(x)

= pxp−1f (x) + xpf ′(x)
xpf (x)

= xp−1f (x)(p + o(1))
xpf (x)

= p + o(1)
x

<
1
x

(3.12)

and f ′
p(x) > 0 if x ≥ Lp with some Lp > 0. Let Np = max{Kp, Lp}. Define gp(x) = fp(x) if

x ≥ Np and let gp be affine on [0,Np] with slope f ′
p(Np) > 0. By (3.11) we have f ′′

p (x) < 0
for x ≥ Np, so gp is increasing and concave. We only need to show that gp(0) > 0. Indeed,
by (3.12) we obtain that

gp(0) = fp(Np) − f ′
p(Np)Np > 0.

Thus (5) holds.
Finally, we prove (6). Let fq(x) = xqf (x), similarly to (3.11) we obtain that

f ′′
q (x) = xq−2f (x)(q(q − 1) + o(1)) > 0

and f ′
q(x) > 0 if x ≥ Nq with some Nq > 0. Choose 0 < εq < f ′

q(Nq) such that
fq(Nq) − εqNq > 0. Let gq(x) = fq(x) if x ≥ Nq and let gq be affine on [0,Nq] with
slope εq. Clearly gq is increasing and convex, so we only need to show that gq(0) > 0.
Indeed, we have

gq(0) = fq(Nq) − εqNq > 0.

Hence (6) holds, and the proof is complete.

Lemma 3.5: Let g : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
g(2n)

< ∞.

Then there is a non-decreasing function f : [0,∞) → R
+ such that

(i)
∑∞

n=1 1/f (2
n) < ∞,

(ii) limn→∞ f (2n+1)/f (2n) = 1,
(iii) lim supx→∞ f (x)/g(x) < ∞,
(iv) h(x) = xf (x) is piecewise linear, increasing, and convex on [0,∞).

Proof: By Corollary 3.2 we may assume that

lim
n→∞

g(2n+1)

g(2n)
= 1. (3.13)

Define an = g(2n) for all n ∈ N
+. Define the sequence {bn}n≥1 for all n ∈ N

+ such that
b1 = a1, b2 = a2, and for all n ∈ N

+ we recursively define
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bn+2 = max {an+2, (3/2)bn+1 − (1/2)bn} . (3.14)

The definition clearly implies that for all n ∈ N
+ we have

2bn+2 − 3bn+1 + bn ≥ 0. (3.15)

First we show that bn is non-decreasing. Indeed, b2 ≥ b1 and assume by induction that
bn+1 ≥ bn for some n ≥ 1, then bn+2 ≥ (3/2)bn+1 − (1/2)bn ≥ bn+1. Now we prove that
for all n ∈ N

+ we have
bn
an

≤ 2. (3.16)

Fix an arbitrary integer m ≥ 3 and let k be the largest integer such that 2 ≤ k ≤ m and
bk = ak. As b2 = a2, we obtain that k exists. Let us define {cn}n≥0 such that c0 = bk−1,
c1 = bk, and for all n ∈ N let

cn+2 = (3/2)cn+1 − (1/2)cn.

Then clearly bm = cm−k+1. Solving the linear recursion for cn and using that 0 < c0 ≤ c1
we obtain for all n ∈ N that

cn = 2c1 − c0 + c0 − c1
2n−1 < 2c1.

Thus bm = cm−k+1 < 2c1 = 2bk = 2ak. Therefore the monotonicity of the sequence
{an}n≥1 implies that

bm
am

≤ 2
ak
am

≤ 2, (3.17)

so (3.16) holds.
Let us define f : [0,∞) → R

+ as follows. Let f (2n) = bn for all n ∈ N
+, and let

f (x) = f (2) if 0 ≤ x ≤ 2. If n ∈ N
+ and 0 ≤ x ≤ 2n then let

f (x + 2n) = bn + 2(bn+1 − bn)
x

x + 2n
.

Since {bn}n≥1 is non-decreasing, it is easy to see that f is non-decreasing and continuous.
Then bn ≥ an and

∑∞
n=1 1/an < ∞ yield that (i) holds.

Let us define en = bn+1/bn for all n ∈ N
+ and let E = lim supn→∞ en. Clearly en ≥ 1

for all n, so it is enough to show for (ii) that E ≤ 1. By bn+1 ≥ an+1 and (3.13) we obtain
that

lim sup
n→∞

an+2

bn+1
≤ lim sup

n→∞
an+1

bn+1
lim
n→∞

an+2

an+1
≤ 1. (3.18)

For all n ∈ N
+ we have

(3/2)bn+1 − (1/2)bn
bn+1

= 3
2

− 1
2en

≥ 1. (3.19)

Then (3.14), (3.18), and (3.19) yield that

E = lim sup
n→∞

en+1 ≤ lim sup
n→∞

(
3
2

− 1
2en

)
= 3

2
− 1

2 lim supn en
= 3

2
− 1

2E
. (3.20)
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Solving the above inequality implies that E ≤ 1, so (ii) is satisfied.
Monotonicity, (3.17), and (3.13) imply that for all n ∈ N

+ and 2n ≤ z ≤ 2n+1 we have

f (z)
g(z)

≤ f (2n+1)

g(2n)
= bn+1

an
≤ 2an+1

an
→ 2

as n → ∞, so (iii) holds.
Finally, let us define h : [0,∞) → [0,∞) as h(x) = xf (x). Then h(x) = b1x if 0 ≤ x ≤

2, and for all n ∈ N
+ and 0 ≤ x ≤ 2n we have

h(x + 2n) = (x + 2n)f (x + 2n) = bn2n + (2bn+1 − bn)x.

Clearly h is continuous and increasing. We obtain that h is affine on [0, 2] with slope
d0 := b1, and for each n ∈ N

+ it is also affine on [2n, 2n+1]with slope dn := 2bn+1 −bn, so
h is piecewise linear. In order to prove that h is convex, we need to prove that the sequence
{dn}n≥0 is non-decreasing. Clearly d1 ≥ d0 and by (3.15) for all n ∈ N

+ we have

dn+1 − dn = 2bn+2 − 3bn+1 + bn ≥ 0.

Thus {dn}n≥0 is non-decreasing, so (iv) holds. The proof is complete.

Lemma 3.6: Let g : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
g(2n)

< ∞.

Let q ≥ 1. Then there is a non-decreasing function f : [0,∞) → R
+ such that

(i)
∑∞

n=1 1/f (2
n) < ∞,

(ii) limn→∞ f (2n+1)/f (2n) = 1,
(iii) lim supx→∞ f (x)/g(x) < ∞,
(iv) there is an increasing convex function fq : [0,∞) → R

+ and Nq > 0 such that fq is
affine on [0,Nq] and fq(x) = xqf (

√
x) for x ≥ Nq.

Proof: Define g∗ : [0,∞) → R
+ as g∗(x) = g(

√
x). Clearly g∗ is a non-decreasing

function such that g∗(x) ≤ g(x) for x ≥ 1. Fact 2.1 yields that
∑∞

n=1 1/g
∗(2n) < ∞.

Corollary 3.4 and Lemma 3.5 imply that there is a non-decreasing function f ∗ : [0,∞) →
R

+ such that

(1)
∑∞

n=1 1/f
∗(2n) < ∞,

(2) limn→∞ f ∗(2n+1)/f ∗(2n) = 1,
(3) lim supx→∞ f ∗(x)/g∗(x) < ∞,
(4) there is an increasing convex function f ∗

q : [0,∞) → R
+ andNq > 0 such that f ∗

q is
affine on [0,Nq] and f ∗

q (x) = xqf ∗(x) for all x ≥ Nq.

Define f : [0,∞) → R
+ as f (x) = f ∗(x2). By (1) we have

∞∑
n=1

1
f (2n)

=
∞∑
n=1

1
f ∗(4n)

<
∞∑
n=1

1
f ∗(2n)

< ∞,
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so (i) holds. By (2) we have

lim
n→∞

f (2n+1)

f (2n)
= lim

n→∞
f ∗(4n+1)

f ∗(4n)
= lim

n→∞
f ∗(2n+2)

f ∗(2n+1)
· lim
n→∞

f ∗(2n+1)

f ∗(2n)
= 1,

thus (ii) is satisfied. The definitions and (3) yield that

lim sup
x→∞

f (x)
g(x)

= lim sup
x→∞

f ∗(x2)
g∗(x2)

= lim sup
x→∞

f ∗(x)
g∗(x)

< ∞,

so (iii) holds. Finally, define fq : [0,∞) → R
+ as fq(x) = f ∗

q (x), then (4) yields that fq is an
increasing convex function which is affine on [0,Nq] and for all x ≥ Nq we have

fq(x) = f ∗
q (x) = xqf ∗(x) = xqf (

√
x),

hence (iv) holds. The proof is complete.

4. Sequences of arbitrary random variables

The main goal of this section is to prove Theorems 4.1 and 4.2.
Theorem 4.1: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r < 1 and let r ≤ p, and define q = q(r, p) = max{p, (p− r)/(1− r)}. Assume that
{Xn}n≥1 is a sequence of random variables with supn≥1 E (|Xn|qf (|Xn|)) < ∞. Then for all
ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

Proof: Let ε > 0 be arbitrarily fixed. We may assume that Xi ≥ 0 for all i, otherwise we
can replace Xi by |Xi|. ThusMn = Sn for all n ∈ N

+. First suppose that p < 1, then q = p.
We may assume by Corollary 3.4(5) and Fact 2.2 that there exists an Np > 0 and a concave
increasing function gp : [0,∞) → R

+ such that gp(x) = xpf (x) for all x ≥ Np. By Fact 2.2
we have

sup
n≥1

E gp(|Xn|) = C < ∞. (4.1)

As gp is concave with gp(0) = 0, it is subadditive. Fix an integer n0 ≥ (Np/ε)
r . Markov’s

inequality, the fact that gp is increasing and subadditive, and (4.1) imply that for each ε > 0
and n ≥ n0 we have
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P (Mn > εn1/r) = P (|Sn| > εn1/r)
= P (gp(|Sn|) > gp(εn1/r))

≤ E gp(|Sn|)
gp(εn1/r)

= E gp(|Sn|)
(εn1/r)pf (εn1/r)

≤
∑n

i=1 E gp(|Xi|)
εpnp/r f (εn1/r)

≤ Cn
εpnp/r f (εn1/r)

� n1−p/r

f (εn1/r)
.

Therefore by Fact 2.1 we have

∑
n≥n0

np/r−2
P (Mn > εn1/r) �

∑
n≥n0

1
nf (εn1/r)

< ∞,

which completes the proof for p < 1.
Now assume that p ≥ 1, then q = (p − r)/(1 − r) ≥ 1. We may assume by

Corollary 3.4(6), Lemma 3.5, and Fact 2.2 that there is an Nq > 0 and an increasing
convex function gq : [0,∞) → R

+ such that gq(x) = xqf (x) for all x ≥ Nq. By Fact 2.2 we
have

sup
n≥1

E gq(|Xn|) = C < ∞. (4.2)

Fix an integer n1 ≥ (Nq/ε)
r/(1−r). Markov’s inequality, the fact that gq is increasing and

Jensen’s inequality holds for the convex gq, and (4.2) imply that for each ε > 0 and n ≥ n1
we have

P (Mn > εn1/r) = P (|Sn| > εn1/r)
≤ P (gq(|Sn|/n) > gq(εn1/r−1))

≤ E gq(|Sn|/n)
gq(εn1/r−1)

= E gq(|Sn|/n)
εqnq(1/r−1)f (εn1/r−1)

≤ (1/n)
∑n

i=1 E gq(|Xi|)
εqnp/r−1f (εn1/r−1)

≤ C
εqnp/r−1f (εn1/r−1)

� n1−p/r

f (εn1/r−1)
.
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Thus the above inequality and Fact 2.1 yields that

∑
n≥n1

np/r−2
P (Mn > εn1/r) �

∑
n≥n1

1
nf (εn1/r−1)

< ∞.

This concludes the proof.

Theorem 4.2: Let f : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

= ∞.

Let 0 < r < 1 ≤ p and let q = q(r, p) = (p− r)/(1− r). Then there is a sequence of random
variables {Xn}n≥1 such that supn≥1 E (|Xn|qf (|Xn|)) < ∞ and

∞∑
n=1

np/r−2
P (|Sn| > n1/r) = ∞.

Proof: For all k ∈ N
+ let

pk = 4k(1−p/r)

f (41+k(1/r−1))
.

Fix k0 ∈ N
+ such that for all k ≥ k0 we have pk < 1. Let Xn ≡ 0 for all n < 4k0 . Let k > k0

be fixed, then for allm, n ∈ {4k−1, . . . , 4k − 1} let Xn = Xm and let

P (Xn = 41+k(1/r−1)) = pk and P (Xn = 0) = 1 − pk.

Then supn≥1 E (|Xn|qf (|Xn|)) = 4q < ∞, and for all 2 · 4k−1 ≤ n < 4k we have

P (|Sn| > n1/r) ≥ P (4k−1Xn ≥ 4k/r) = P (Xn ≥ 41+k(1/r−1)) = pk.

The above inequality and Fact 2.1 imply that

∞∑
n=1

np/r−2
P (|Sn| > n1/r) ≥

∑
k>k0

∑
2·4k−1≤n<4k

np/r−2
P (|Sn| > n1/r)

≥
∑
k>k0

(2 · 4k−1)(4(k−1)(p/r)4−2k)pk

= 2−2p/r−1
∑
k>k0

1
f (41+k(1/r−1))

= ∞.

The proof is complete.

5. Martingale difference sequences

5.1. The cases 1 < p < 2 and r = p = 1

The main goal of this subsection is to prove Theorem 5.1.



492 R. BALKA AND T. TÓMÁCS

Theorem 5.1: Let f : [0,∞) → R
+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 1 < p < 2 and 0 < r ≤ p or let r = p = 1. Let {Xn}n≥1 be a MDS such that
supn≥1 E (|Xn|pf (|Xn|)) < ∞. Then for all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

Proof: Let ε > 0 be arbitrarily fixed and assume supn≥1 E (|Xn|pf (|Xn|)) = C < ∞. For all
k ∈ N

+ let

Fk(t) = P (|Xk| ≤ t)

be the cumulative distribution function of |Xk|. Define q = (2−p)/r > 0 and c = 2−p > 0.
By Corollary 3.4(4) and Fact 2.2 we may assume that there exists an Rc > 0 such that the
function x �→ x−cf (x) is decreasing for x ≥ Rc . For all n ∈ N

+ and for all k ∈ {1, . . . , n}
define

Yk,n = XkI(|Xk| ≤ n1/r) − E (XkI(|Xk| ≤ n1/r) |Fk−1),
Zk,n = XkI(|Xk| > n1/r) − E (XkI(|Xk| > n1/r) |Fk−1).

For all n ∈ N
+ define

S∗
k,n =

k∑
i=1

Yi,n and M∗
n = max

1≤k≤n
|S∗
k,n|,

S∗∗
k,n =

k∑
i=1

Zi,n and M∗∗
n = max

1≤k≤n
|S∗∗
k,n|.

Clearly for all n ∈ N
+ and 1 ≤ k ≤ n we have

E (Yk,n |Fk−1) = E (Zk,n |Fk−1) = 0, (5.1)

so {S∗
k,n}1≤k≤n and {S∗∗

k,n}1≤k≤n are martingales. For all n ∈ N
+ and 1 ≤ k ≤ n we have

Sk = S∗
k,n + S∗∗

k,n,

so for all n ∈ N
+ we have

Mn ≤ M∗
n + M∗∗

n . (5.2)

By (5.1) we have E (Yk,nY�,n) = 0 for all 1 ≤ k < � ≤ n, so applying Doob’s in-
equality for the martingale {S∗

k,n}1≤k≤n and the identity E (X − E (X |F))2 = E (X2) −
E ( E (X |F))2 ≤ E (X2) implies that
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P (M∗
n > εn1/r) ≤ 1

ε2
n−2/r

E
(
(S∗

n,n)
2)

= 1
ε2

n−2/r
n∑

k=1

E (Y2
k,n)

≤ 1
ε2

n−2/r
n∑

k=1

E (X2
k I(|Xk| ≤ n1/r)).

Therefore

∞∑
n=1

np/r−2
P (M∗

n > εn1/r) �
∞∑
n=1

np/r−2/r−2
n∑

k=1

E (X2
k I(|Xk| ≤ n1/r))

=
∞∑
n=1

n−q−2
n∑

k=1

∫ ∞

0
t2I(t ≤ n1/r)) dFk(t)

=
∞∑
k=1

∫ ∞

0
t2

∑
n≥max{k,tr}

n−q−2 dFk(t)

�
∞∑
k=1

∫ ∞

0
t2(max{k, tr})−q−1 dFk(t)

=
∞∑
k=1

(Ak + Bk + Ck),

where

Ak =
∫ Rc

0
t2k−q−1 dFk(t), Bk =

∫ k1/r

Rc
t2k−q−1 dFk(t), Ck =

∫ ∞

k1/r
tp−r dFk(t).

Clearly
∞∑
k=1

Ak ≤
∞∑
k=1

R2
c k

−q−1 < ∞. (5.3)

Let k ≥ Rr
c . Using that x−cf (x) is non-increasing if x ≥ Rc , and xrf (x) is non-decreasing,

we obtain that

Bk + Ck ≤ k−q−1
∫ k1/r

Rc
t2

tp−2f (t)
k(p−2)/r f (k1/r)

dFk(t) +
∫ ∞

k1/r
tp−r tr f (t)

kf (k1/r)
dFk(t)

≤ 1
kf (k1/r)

∫ ∞

Rc
tpf (t) dFk(t) ≤ E (|Xk|pf (|Xk|))

kf (k1/r)
≤ C

kf (k1/r)
.

By Fact 2.2 we have Ak + Bk + Ck ≤ E (|Xk|p−r) < ∞ for all k, so the above inequality
with (5.3) and Fact 2.1 imply that

∞∑
n=1

np/r−2
P (M∗

n > εn1/r) �
∞∑
k=1

(Ak + Bk + Ck) < ∞. (5.4)
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Applying Doob’s inequality for themartingale {S∗∗
k,n}1≤k≤n, the triangle inequality, Jensen’s

inequality (for the conditional expectation as well), and the law of total expectation in this
order implies that

P (M∗∗
n > εn1/r) � n−1/r

E (|S∗∗
n,n|)

≤ n−1/r
n∑

k=1

E (|Zk,n|)

≤ 2n−1/r
n∑

k=1

E (|Xk|I(|Xk| > n1/r))

≤ 2n−1/r
n∑

k=1

E (|Xk||Xk|p−1f (|Xk|)I(|Xk| > n1/r))
n(p−1)/r f (n1/r)

≤ 2
n−p/r

f (n1/r)

n∑
k=1

E (|Xk|pf (|Xk|))

≤ 2C
n1−p/r

f (n1/r)
.

The above inequality and Fact 2.1 yield that

∞∑
n=1

np/r−2
P (M∗∗

n > εn1/r) �
∞∑
n=1

1
nf (n1/r)

< ∞. (5.5)

Finally, (5.2), (5.4), and (5.5) imply that

∞∑
n=1

np/r−2
P (Mn > εn1/r) ≤

∞∑
n=1

np/r−2
P (M∗

n > (ε/2)n1/r)

+
∞∑
n=1

np/r−2
P (M∗∗

n > (ε/2)n1/r) < ∞.

The proof is complete.

5.2. The case p ≥ 2

The goal of the subsection is to prove Theorems 5.2 and 5.4.
Theorem 5.2: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.
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Let 0 < r < 2 ≤ p and let q = q(r, p) = 2(p − r)/(2 − r). Let {Xn}n≥1 be a MDS such that
supn≥1 E (|Xn|qf (|Xn|)) < ∞. Then for all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

Before proving the above theoremwe need the next inequality due to Burkholder, Davis,
and Gundy, see [4, Theorem 1.1] or [3, Theorem 15.1].

Theorem 5.3 (Burkholder–Davis–Gundy Inequality): Let g : [0,∞) → [0,∞) be a
convex function such that g(0) = 0 and there is a constant c ∈ R

+ such that

g(2x) ≤ cg(x) for all x > 0. (5.6)

Then there exists a constant C ∈ R
+ depending only on c such that for every MDS {Xi}i≥1

for all n ∈ N
+ we have

E g(Mn) ≤ C E g
(√

X2
1 + · · · + X2

n

)
.

Proof of Theorem 5.2: Let ε > 0 be arbitrarily fixed. As q ≥ 2, by Lemma 3.6 and Fact 2.2
we may assume that

lim
n→∞

f (2n+1)

f (2n)
= 1 (5.7)

and there is an increasing convex function fq/2 : [0,∞) → [0,∞) and N , a ∈ R
+ such

that fq/2(0) = 0 and fq/2 is linear on [0,N], and for all x ≥ N we have

fq/2(x) = xq/2f (
√
x) − a.

Define gq : [0,∞) → [0,∞) as gq(x) = fq/2(x2). Since gq is a composition of convex
increasing functions, it is increasing and convex. We also have gq(0) = 0, moreover
gq(x) = bx2 for x ∈ [0,√N] with some constant b > 0, and for x ≥ N we have

gq(x) = xqf (x) − a.

Fact 2.2 yields that
sup
n≥1

E gq(|Xn|) = K < ∞. (5.8)

Let hq : (0,∞) → R
+ be defined as

hq(x) = gq(2x)
gq(x)

.

As gq(x) > 0 for all x > 0, the function hq is well defined, and the continuity of gq implies
that hq is continuous, too. Since gq(x) = bx2 for x ∈ [0,√N], we have hq(x) = 4 for
x ∈ (0,

√
N/2). By (5.7) we obtain that lim supx→∞ hq(x) < ∞, so the continuity of hq

implies that hq is bounded. Therefore gq satisfies the growth condition (5.6).
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Let us choose K ∈ R
+ such that εqf (εn1/r−1/2) > 2a for each n ≥ K . Define

L = max
{
K ,
(√

N/ε
)2r/(2−r)

}
.

Applying that gq is increasing, Markov’s inequality, Theorem 5.3 for gq and the finite
martingale {Si/√n}1≤i≤n, Jensen’s inequality for fq/2, and (5.8) implies that for all n ≥ L
we have

P (Mn > εn1/r) = P (gq(Mn/
√
n) > gq(εn1/r−1/2))

≤ E gq(Mn/
√
n)

gq(εn1/r−1/2)

≤
C E

(
gq
(√

(1/n)
∑n

i=1 X
2
i

))
gq(εn1/r−1/2)

= C E
(
fq/2

(
(1/n)

∑n
i=1 X

2
i
))

gq(εn1/r−1/2)

≤ C(1/n)
∑n

i=1 E fq/2(X2
i )

gq(εn1/r−1/2)

= C(1/n)
∑n

i=1 E gq(|Xi|)
gq(εn1/r−1/2)

≤ CK
εqnq(1/r−1/2)f (εn1/r−1/2) − a

≤ 2CKε−qn1−p/r

f (εn1/r−1/2)

� n1−p/r

f (εn1/r−1/2)
.

Therefore the above inequality and Fact 2.1 imply that

∑
n≥L

np/r−2
P (Mn > εn1/r) �

∑
n≥L

1
nf (εn1/r−1/2)

< ∞.

The proof is complete. �
Theorem 5.4: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

= ∞.

Let 0 < r < 2 ≤ p and let q = q(r, p) = 2(p − r)/(2 − r). Then there is a MDS {Xn}n≥1
such that supn≥1 E (|Xn|qf (|Xn|)) < ∞ and

∞∑
n=1

np/r−2
P (|Sn| > n1/r) = ∞.
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Proof: Let {Yn,Zk}n,k≥1 be independent random variables such that for all n ∈ N
+ we have

P (Yn = 1) = P (Yn = −1) = 1
2
.

For all k ∈ N
+ let

pk = 4k(1−p/r)

f (4k(1/r−1/2))
.

Fix k0 ≥ 2 such that for all k ≥ k0 we have pk < 1. We define Zk ≡ 0 if k ≤ k0 and for
k > k0 let

P (Zk = 4k(1/r−1/2)) = pk and P (Zk = 0) = 1 − pk.

For all k ∈ N
+ and 4k−1 ≤ n < 4k let us define Xn = YnZk. Clearly we have supn≥1

E (|Xn|qf (|Xn|) = 1. Assume that Xi : � → R are random variables on the probability
space (�,F ,P ). Let F0 = {∅,�} and let Fn = σ(X1, . . . ,Xn) for all n ∈ N

+. We show
that {Xn}n≥1 is a MDS with respect to the natural filtration {Fn}n≥1. Fix n, k ∈ N

+ with
4k−1 ≤ n < 4k. Indeed, as Yn is independent of {Z1, . . . ,Zk,Y1, . . .Yn−1}, it is independent
of σ(Zk,Fn−1), so a property of conditional expectation implies that for all n ∈ N

+ we
have

E (Xn |Fn−1) = E (YnZk |Fn−1) = E (Yn) E (Zk |Fn−1) = 0,

so {Xn}n≥1 is really a MDS. By the central limit theorem there is an absolute constant c > 0
such that for all k > k0 and 2 · 4k−1 ≤ n < 4k we have

P (Y4k−1 + · · · + Yn ≥ 2k) = P (Y4k−1 + · · · + Yn ≤ −2k) ≥ c. (5.9)

We will prove that for all fixed k > k0 and 2 · 4k−1 ≤ n < 4k we have

P (|Sn| > n1/r) ≥ cpk. (5.10)

Let us use the notation S = S4k−1−1 and fix an arbitrary x ∈ R with P (S = x) > 0. By the
law of total probability in order to prove (5.10) it is enough to show that

P (|Sn| > n1/r | S = x) ≥ cpk. (5.11)

As 4k/r > n1/r , either x + 4k/r > n1/r or x − 4k/r < −n1/r . We may assume by symmetry
that x + 4k/r > n1/r . It is clear from the definition that S and Sn − S are independent, and
the independence of Zk and {Y4k−1 , . . . ,Yn}, and (5.9) yield that

P (|Sn| > n1/r | S = x) ≥ P (Sn − S ≥ 4k/r | S = x)

= P (Sn − S ≥ 4k/r)

≥ P (Y4k−1 + · · · + Yn ≥ 2k, Zk = 4k(1/r−1/2))

= P (Y4k−1 + · · · + Yn ≥ 2k) P (Zk = 4k(1/r−1/2))

≥ cpk.

This implies (5.11), so (5.10) holds. Inequality (5.10) and Fact 2.1 yield that
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∞∑
n=1

np/r−2
P (|Sn| > n1/r) ≥

∑
k>k0

∑
2·4k−1≤n<4k

np/r−2
P (|Sn| > n1/r)

≥
∑
k>k0

(2 · 4k−1)(4(k−1)(p/r)4−2k)cpk

= c2−2p/r−1
∑
k>k0

1
f (4k(1/r−1/2))

= ∞.

The proof is complete.

6. Independent, negatively associated, and pairwise NQD random variables

The main goal of this section is to prove Theorems 6.1 and 6.5.
Theorem 6.1: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r < 2 ≤ p and let {Xn}n≥1 be a sequence of negatively associated, centred random
variables such that supn≥1 E (|Xn|pf (|Xn|)) < ∞. For all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

First we need the following inequality of Shao [23, Theorem 3].

Theorem 6.2 (Shao): Let {Xi : 1 ≤ i ≤ n} be a centred, negatively associated
sequence of random variables with finite second moments. Let Mn = max1≤k≤n |Sk| and
Bn = ∑n

i=1 E (X2
i ). Then for all x > 0, a > 0, and 0 < α < 1 we have

P (Mn ≥ x) ≤ 2P

(
max
1≤i≤n

|Xi| > a
)

+ 2
1 − α

exp
(

− x2α
2(ax + Bn)

(
1 + 2

3
log

(
1 + ax

Bn

)))
.

Proof of Theorem 6.1: Fix ε > 0. By Fact 2.2 we have supn≥1 E (X2
n) = C < ∞. Thus

Bn = ∑n
i=1 E (X2

i ) ≤ Cn for all n. LetN = 8p/(2− r). Applying Theorem 6.2 for n ∈ N
+,

x = εn1/r , a = x/N , and α = 1/2 we obtain that

P (Mn > εn1/r) ≤ an + bn, (6.1)

where

an = 2P

(
max
1≤i≤n

|Xi| > εn1/r/N
)
,

bn = 4 exp
(

− ε2n2/r

4(ε2n2/r/N + Cn)

(
1 + 2

3
log

(
1 + ε2n2/r

NCn

)))
.
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Let c = ε/N , by Markov’s inequality we have

an ≤ 2
n∑

i=1

P (|Xi| > cn1/r)

≤ 2
n∑

i=1

P (|Xi|pf (|Xi|) ≥ cpnp/r f (cn1/r))

≤ 2
n∑

i=1

E (|Xi|pf (|Xi|))
cpnp/r f (cn1/r)

� n1−p/r

f (cn1/r)
,

thus Fact 2.1 implies that

∞∑
n=1

np/r−2an �
∞∑
n=1

1
nf (cn1/r)

< ∞. (6.2)

Since 2/r > 1, easy calculation shows that

bn = 4 exp
((

−N
6

(
2
r

− 1
)

+ o(1)
)
log n

)
as n → ∞,

so for all large enough n we have

bn ≤ exp ( − (N/8)(2/r − 1) log n) = n−N(2−r)/(8r) = n−p/r .

Therefore ∞∑
n=1

np/r−2bn < ∞. (6.3)

Clearly (6.1), (6.2), and (6.3) complete the proof. �
Corollary 6.3: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

< ∞.

Let 0 < r < 1 ≤ p, and let {Xn}n≥1 be a sequence of

(1) pairwise NQD random variables if 1 ≤ p < 2,
(2) negatively associated random variables if p ≥ 2.

Assume that supn≥1 E (|Xn|pf (|Xn|)) < ∞. Then for all ε > 0 we have

∞∑
n=1

np/r−2
P (Mn > εn1/r) < ∞.

Proof: Fix ε > 0 arbitrarily. We may assume that Xn ≥ 0 almost surely for all n, otherwise
we replace Xn by |Xn|. ThusMn = Sn. Fact 2.2 and p ≥ 1 imply supn≥1 E (Xn) = K < ∞.
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For all n ∈ N
+ define

Yn = Xn − E (Xn).

Clearly if {Xn}n≥1 is pairwise NQD/negatively associated then {Yn}n≥1 is also pairwise
NQD/negatively associated. As |Yn| ≤ max{K ,Xn}, the monotonicity of the function
x �→ xpf (x) implies that almost surely for all n ∈ N

+ we have

|Yn|pf (|Yn|) ≤ Kpf (K) + Xp
nf (Xn),

so
sup
n≥1

E (|Yn|pf (|Yn|)) ≤ Kpf (K) + sup
n≥1

E (Xp
nf (Xn)) < ∞.

Define Tn = ∑n
i=1 Yi. For all n ≥ (2K/ε)r/(1−r) we have

P (Mn > εn1/r) = P (Sn > εn1/r) (6.4)
≤ P (Tn > εn1/r − Kn)
≤ P (Tn > (ε/2)n1/r)
≤ P (|Tn| > (ε/2)n1/r).

Applying Theorem 1.15(i) if p = 1, Theorem 1.16 if 1 < p < 2, and Theorem 6.1 if p ≥ 2
for {Yn}n≥1 yields that

∞∑
n=1

np/r−2
P (|Tn| > (ε/2)n1/r) < ∞,

so (6.4) finishes the proof.

The following lemma is due to Nash [22], which gives a necessary and sufficient
condition for P ( lim supn→∞ An) = 1 in terms of conditional probabilities.

Lemma 6.4 (Nash): Let {An}n≥1 be events and define H ⊂ {0, 1}N
+ such that

H = {(α1,α2, . . . ) : αn = 1 only for finitely many n
and P (I(A1) = α1, . . . , I(An) = αn) > 0 for all n}.

Then P ( lim supn→∞ An) = 1 if and only if for all (α1,α2, . . . ) ∈ H we have

∞∑
n=2

P (An | I(A1) = α1, . . . , I(An−1) = αn−1) = ∞.

The construction in the following theorem dates back to Chung [6, Theorem 2], but our
proof is more involved.
Theorem 6.5: Let f : [0,∞) → R

+ be a non-decreasing function such that

∞∑
n=1

1
f (2n)

= ∞.
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Let 0 < r < 2 and let p ≥ r. Then there exists a sequence of independent, centred random
variables {Xn}n≥1 such that supn≥1 E (|Xn|pf (|Xn|)) < ∞ and

∞∑
n=1

np/r−2
P (|Sn| > n1/r) = ∞.

Moreover, if r = p then lim supn→∞ n−1/pSn ≥ 1 almost surely.

Proof: For all k ∈ N
+ let

pk = 4−kp/r

f (4k/r)
.

Since 4−kp/r ≤ 4−k, for c = exp ( − 3/f (41/r)) we can fix k0 ∈ N
+ such that for all k ≥ k0

we have pk < 1/2 and
(1 − 2pk)4

k ≥ c. (6.5)

We define a sequence of independent random variables {Xn}n≥1 as follows. Let Xn ≡ 0
for all n < 4k0 . If 4k−1 ≤ n < 4k for some integer k > k0 then let

P (Xn = 4k/r) = P (Xn = −4k/r) = pk and P (Xn = 0) = 1 − 2pk.

Then {Xn}n≥1 is a sequence of independent, centred random variables such that supn≥1
E (|Xn|pf (|Xn|)) = 2. Fix k > k0 and 2 · 4k−1 ≤ n < 4k. We will prove that

P (|Sn| > n1/r) ≥ c4k−1pk. (6.6)

Let us use the notation S = Sn−4k−1 and fix an arbitrary x ∈ R with P (S = x) > 0. By the
law of total probability in order to prove (6.6) it is enough to show that

P (|Sn| > n1/r | S = x) ≥ c4k−1pk. (6.7)

As 4k/r > n1/r , we have either x + 4k/r > n1/r or x − 4k/r < −n1/r . By symmetry we may
assume that x + 4k/r > n1/r . Thus the independence of S and Sn − S, and (6.5) yield that

P (|Sn| > n1/r | S = x) ≥ P (Sn − S = 4k/r | S = x) = P (Sn − S = 4k/r)

≥ 4k−1pk(1 − 2pk)4
k−1−1 ≥ c4k−1pk,

where only the sequences with 4k−1 − 1 zeros were taken into account. This implies (6.7),
hence (6.6) holds. Inequality (6.6) and Fact 2.1 yield that

∞∑
n=1

np/r−2
P (|Sn| > n1/r) ≥

∑
k>k0

∑
2·4k−1≤n<4k

np/r−2
P (|Sn| > n1/r)

≥
∑
k>k0

(2 · 4k−1)(4(k−1)(p/r)4−2k)c4k−1pk

= c2−2p/r−3
∑
k>k0

1
f (4k/r)

= ∞.
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This proves the first claim.
Now assume that p = r. For all k ∈ N

+ let us define the event

Ak = {S4k−1 ≥ 4k/p}.

Fix arbitrary k > k0 and (α1, . . . ,αk−1) ∈ {0, 1}k−1 such that

P (I(A1) = α1, . . . , I(Ak−1) = αk−1) > 0.

Repeating the argument of the proof of (6.7) for fixed values of X1, . . . ,X4k−1−1 and using
the law of total probability for conditional probabilities we obtain that

P (Ak | I(A1) = α1, . . . , I(Ak−1) = αk−1) ≥ 3 · 4k−1pk(1 − 2pk)3·4
k−1−1 (6.8)

≥ 3c4k−1pk � 1
f (4k/p)

.

Fact 2.1 implies that
∑

k>k0 1/f (4
k/p) = ∞, so (6.8) and Lemma 6.4 yield that

P ( lim supk→∞ Ak) = 1. Thus lim supn→∞ n−1/pSn ≥ 1 almost surely. The proof is
complete.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The first author was supported by the National Research, Development and Innovation Office–
NKFIH, [grant number 104178]. The second author’s research was supported by the grant EFOP-
3.6.1-16-2016-00001 (“Complex improvement of research capacities and services at Eszterhazy
Karoly University”).

References

[1] K. Alam andK.M. Lal Saxena, Positive dependence inmultivariate distributions, Commun. Stat.
Theory Methods 10(12) (1981), pp. 1183–1196.

[2] L.E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Am. Math. Soc.
120 (1965), pp. 108–123.

[3] D.L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), pp.
19–42.

[4] D.L. Burkholder, B.J. Davis, and R.F. Gundy, Integral inequalities for convex functions of
operators on martingales, in Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Volume II: Probability
Theory, University California Press, Berkeley, CA, 1972, pp. 223–240.

[5] Y.S. Chow,Delayed sums and Borel summability of independent, identically distributed random
variables, Bull. Inst. Math. Acad. Sinica 1(2) (1973), pp. 207–220.

[6] K.L. Chung, Note on some strong laws of large numbers, Am. J. Math. 69 (1947), pp. 189–192.
[7] J. Dedecker and F. Merlevéde, Convergence rates in the law of large numbers for Banach-valued

dependent variables, Theory Probab. Appl. 52(3) (2008), pp. 416–438.
[8] R. Durrett, Probability: Theory and Examples, 4th ed., CambridgeUniversity Press, Cambridge,

2010.



STOCHASTICS 503

[9] J. Elton, A law of large numbers for identically distributed martingale differences, Ann. Probab.
9(3) (1981), pp. 405–412.
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