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Abstract
A general convergence rate theorem is obtained for arrays of Banach space valued random elements. This
theorem gives a unified approach to prove and extend several known results.
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1. Introduction

Several papers are devoted to the study of convergence rates in the law of large numbers. The
well-known theorem of Baum and Katz (1965) states the following. Let X, X», ... be independent
identically distributed random variables with EX; = 0 if E|X;|<oo. Let t>0, r>=1 and 2r>t.
Then E|X|'<oo if and only if

W 2P(1S,|>en')<oco  for all &>0.
n=1
Earlier versions of this theorem were obtained by Hsu and Robbins (1947), Erdos (1949,1950) and
Spitzer (1956). The result was extended to Banach space valued random variables (Jain, 1975;
Woyczynski, 1980), to arrays of random variables (Hu et al., 1989; Gut, 1992). For the recent
progress in this field see Ahmed et al. (2002) and Csoérgo (2003).
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Instead of the whole sequence S,,, one can study the subsequence Si,. Most of the papers study
subsequences by methods that are different from the ones used for the whole sequence. Similarly,
papers dealing with arrays of random variables (see Gut, 1992; Fazekas, 1992; Hu et al., 1999)
offer their own method to handle general arrays. The aim of this note is to show that an
appropriate version of the classic result of Jain (1975) on S, (Theorem 3.3) implies theorems on
Sk, for a broad class of k.

Throughout the paper we study Banach space valued random variables. However, some of our
results are new for real variables, too. In Section 2 we introduce notation. The main results are in
Section 3. Theorem 3.1 is a generalization of Theorem 3.3 of Jain (1975). The idea in Theorem 3.1
is the following. When we apply Hoffmann—Jargensen’s inequality, we use two different functions
to obtain upper bounds for the two terms in the inequality. The theorem obtained seems to be
difficult, but when we choose appropriate weight functions we can obtain several known theorems
for general arrays like X,,..., Xu,. Corollaries 3.2 and 3.3 are versions of Theorem 6.2 of
Fazekas (1992) and Corollary 4.1 of Hu et al. (1999), respectively. In Section 4 we give the proofs.
In Section 5 we specialize our result for Banach spaces which are of type p. Then we obtain new
proofs for results in Fazekas (1992) and Hu et al. (1999).

2. Notation

Let N be the set of the positive integers, R the set of real numbers, a vV b = max{a, b} and
a A b =min{a, b}, where a,b € R. Denote by R, the range of the function f and by f og the
composite function of functions f and g¢.

Let &y denote the set of functions f: [0, o0) — [0, 00), that are nondecreasing. A function f/ € @
is said to satisfy the A,-condition (f ~ 4,) if there exists a constant ¢ >0, such that f(2¢) <cf(¢) for
all £>0. It is clear that f ~ 4, iff for every fixed k> 1, there exists a constant ¢>1, such that
f(kt)<cf(¢) for all £>0.

Throughout the paper let {k,,n € N} be a strictly increasing sequence of positive integers.
Following Gut (1985), introduce the functions ¥y and M, with

Y(t) = Card{n € N: k, <t} for ¢>0 and (0)=0,
and

[1
M(ny=> k™' if =1 and M, =K' if 0<i<l,

i=1

where r € R, Card A is the cardinality of the set 4 and [.] denotes the integer function. Let
M = M,.

Let B be a real separable Banach space with norm |.|| and zero element 0. If X is a B-valued
random variable (r.v.) and E|| X || <oc then EX stands for the Bochner integral of X.

X is symmetric if X and —X have same distribution. The symmetrization procedure consists in
assigning to the r.v. X the symmetrized rv. X* = X — X', where X’ is independent of X and has
the same distribution. Then
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P(||lX"||<nP(1X | >20<P(1X*| > ) <2P(|X = b]| > 1/2) 2.1)
for all t£=0 and b € B.
Let {X,x,neN,k=1,...,k,} be an array of B-valued r.v.’s. It is rowwise independent, if

Xou1,..., Xnk, are independent r.v.’s for any fixed n € N. Let Sy, = Z,ﬁ”zl X If k,, = n for all n,
then we denote Sk, by S,. This corresponds to the case of ordinary sequences.

Definition 2.1 (Gut, 1992). We say that the array {Xx,ne N, k=1,...,k,} is weakly mean
dominated (w.m.d.) by the r.v. X, if for some y>0,

]
= > P> Xull>0)<yP(X|>1) forall >0 and neN. (2.2)
k=1
Remark 2.2. If {X,;,n e N,k =1,...,k,} is wm.d. by the r.v. X, then
1 kn
. > P(IXull=0)<yP(1X|=>1) forall 1>0 and neN. (2.3)
n k=1

3. A general convergence rate theorem

Our main result is Theorem 3.1. It concerns the case of k, = n. However, its general setup
allows us to apply it for general sequences k, (see Corollaries 3.2, 3.3, 5.2 and Theorem 5.5).

Theorem 3.1. Let {X,,n e N,k =1,...,n} be an array of rowwise independent B-valued r.v.’s
which is w.m.d. by the r.v. X. Assume that there exists a sequence {y,,n € N} of positive real
numbers such that {||S,|l/7,,n € N} is bounded in probability. Let o, 3, ¢ € &y, and assume that o, is
not bounded, 3, p ~ A, 3£0. Let

p(n) = p(a(n+ 1)) — p(a(n)), n=0,1,2,....

Assume that

Eo(X)<co. EJ(XN<oo and lim 2% = 0o

n—oQ V}’l

Let either

un)=pm—1) forall neN (3.1
or

u(n) = p(n) forall neN. (3.2)
In case (3.2) assume that there exists a constant ¢>0 such that for n € N large enough

cpm)<pn—1). (3.3)
Let ny € N be such that 3(a(n))>0 for all n=ny. If there exist j € N and r>0 such that

() (m+ 9\
n:zno n <9(fx(n))> = (3.4)

then
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> @P(nsnn >eu(n))<oo for all &>0. (3.5)
n=1
The following corollary is a generalization of Theorem 6.2 of Fazekas (1992).

Corollary 3.2. Let {X,y,ne N,k =1,...,k,} be an array of rowwise independent B-valued r.v.’s
which is w.m.d. by the r.v. X. Let M oy ~ Ay, r,5,t>0, rs>t. Assume that {HSk”H/k}/S,n e N} is
bounded in probability. Furthermore, if r>2 we assume that {M(n)/M(n — 1),n € N} is bounded. If

EM?W(X|")<oco and E|X|<oo,
then

o0

> (M) > P(| Sk,

n=1

> ek <oo  for all >0,

The following corollary is a version of Corollary 4.1 of Hu et al. (1999).

Corollary 3.3. Let {Xy,ne N,k =1,...,k,} be an array of rowwise independent B-valued r.v.’s
which is w.m.d. by ther.v. X. Letr € R,0<t<sand M, oy ~ A,. Assume that {HSkn /k,l/s,n e N}
is bounded in probability. If

EM,.(y(1X|)<oo and E|X|*<oo,

then

Zk;‘zP(HSk”H>sk}1/t)<oo for all £>0.

n=1

4. Proofs

We start with some preliminary results. The following lemma is a version of Lemma 2.2 of Jain
(1975).

Lemma 4.1. Let X be a rv., @,0e ®y, pn)=opn+1)—oe(n), n=0,1,2,.... If
E ¢(|X])< o0, then

Z p(n— 1)P(|X|=a(n)) < oo.

n=1

Proof. With notation @, = ¢(«(n)) we have

e8]

Eg(X)=)_ OPO:<o(X)<Ou)=) > fin— DPO:<p(X)<O)

i=1 i=1 n=1

=Y pn—1> PO:<e(X)<Ou)= Y Bin— DP(X|>a(m). O
n=1 i=n n=1

The following lemma is due to Hoffmann—Jergensen (1974) and Jain (1975).
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Lemma 4.2. Let X1,..., X, be B-valued, independent, symmetric r.v.’s and j € N. Then there exists
Aj, B; =0, depending only on j, such that
. t)

j . g2
P< ;Xk >3 z) <A,P<lr£]'§12n||Xk||>t> + B;P (
forall t=20. (A, =1, Bj=4)

The following lemma is a generalization of Theorem 3.1 of Jain (1975) and Lemma 2.6 of
Fazekas (1992).

> X
k=1

Lemma 4.3. Let {X,,,ne N,k =1,...,k,} be an array of rowwise independent, symmetric B-
valued r.v.’s and let {y,,n € N} be a sequence of positive real numbers. Let 3 € @y and 3 ~ A,. If
{HSkn [k, € N} is bounded in probability, then there exist constants a,b>0 such that

ES(HSan)<aE8(1maX ||Xnk||> +b%(y) forall neN.

<k<k,
Proof. Let Ny, = max;<i<k, | Xukll. By 9 € @y and Lemma 4.2, we have for all x>0 and n e N
P(3(| Sk, | /3)> 90N < P(| Sk, || /3> X) S P(NK, > x) + 4P(| Sk, | > )
SP(H(Ni,) = 9(x)) + 4P (3(|| Sk, ) = 9(x)).

Hence
P(S(||Sk, [|/3)> ) SP(H(Nk,) = 1) + 4PTS(|| Sk, |[) = 1) (4.1)

for all € Ry and n € N. Now we prove (4.1) for t¢ Ry. First assume that ¢ € (3(0),sup Ry) N Ry.
Then there exists a =0, so that lim,_,, o3}(x)<t<lim,_ ,o }(x). (Define lim,_,o_o 3(x) as 3(0).) If
Hay<t, then U (v : 90)>Ha+ 1/m)} ={y:9()>1} and U,_, (v : 3 =Ha+ 1/m)} = {y:
3(y)=1}. On the other hand, if 9(a)>1, then (o, {¥:3()>%a—1/m)} ={y: Hy)>1} and
Moz 2 3()=%(a — 1/m)} = {y : () =1}. Hence, using continuity of probability and (4.1) for
t € Ry, we have that (4.1) is true in this case as well. If 0<z<3(0) or 7= sup Ry, then (4.1) is
obvious. Now, applying 3 ~ 4,, we get that there exists a constant ¢>1 such that

P(3(||Sk, ) > ct) <P(%(Ni,) = 1) + 4PTS(|| Sk, |)=>1) (4.2)

for all £>=0. Integrating with respect to ¢, we obtain

%EQ(HSan)gES(Nk,,) + 4/0 PYS(||Sk, ) > 1)dr. (4.3)

Since {HSk"H/yk”,n € N} is bounded in probability and 3 ~ 4,, therefore there exist constants
Ay, A>0 such that

1
P(||Sk, || =417, < 30 and  3(A17;,) < AI(p,)
for all n € N. Hence we have

1
PS> 493G, )< -
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It follows that

00 A3(yi,,) ©
/ P2(9(HSan)>z)dt</ 1dt+/ —P(S(HSkn )>t)dt
0 0 4

8, €

1
<AI,) + g E(|S,

)- (4.4)
Thus, by (4.3) and (4.4), we get Lemma 4.3. [

The following lemma is a generalization of Lemma 2.1 of Gut (1992) and Lemma 2.7 (b) of
Fazekas (1992).

Lemma 4.4. Let {X,,,ne N, k=1,...,k,} be an array of B-valued r.v.’s which is w.m.d. by the
ru. X, If 3 € &g then

1 kn
= ESIXul)<(1V DE §(X). (4.5)
M =1

Proof. Using 9 € @, and (2.2), we have for all x>0
1 kn 1 kn
— P X ke <— P X, <yP(|X < PO(X])> ,
kn; GUX ) >CN< = D PUX el >2) <7PAX] > x) <P X]) > 6(x)

mg=1

hence we obtain (4.5) for ¢t € Ry. A standard calculation gives (4.5) for t¢ Ry. [
In the proof of Theorem 3.1 we shall apply Lemmas 4.3 and 4.4 for k, = n.

Proof of Theorem 3.1. First assume that X,; are symmetric. Let ¢>0. Using Lemma 4.2 and (2.2),
we get

P(|S,ll > e¥u(m) < AjynP(1 X | > ex(m) + BiP? (1| S, > e(n)). (4.6)

To estimate the second term of (4.6) we can apply 3 € @y, § ~ 4, Chebyshev’s inequality,
Lemmas 4.3 and 4.4. Thus there exist ¢,9’,a, b6>0 such that for all n=ny

PG 1S, >oc(n)> <P Su) > S(a(n))

_JENSD _ ¢
=T Ham)

In formula (4.7) we can choose b such that

(@y'nE (1X1) + b3(y,))- (4.7)

b> gy/E 90 X)), (4.8)

where r is from (3.4). Now (4.6)—(4.8) imply that
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Z Hn )P(||S,1|| >e3ou(n) <Ay Z u(m)P(| X | > ea(n)) + const.

n=1

> w(n) (rn+ 900\
. . 4.9
+ const n_Eno-q-l p ( 5 ) (4.9)

Since ¢ ~ 4,, there exists k>0 such that E(p(IXI/e) <kE ¢(|X|)<oo. Thus, by Lemma 4.1 and
(3.3), there exists n; € N such that

00> Z B(n— 1)P <— >oc(n)> >const. Z w(n)P(| X | > eo(n)). (4.10)

n=n

Then (4.9), (4.10) and (3.4) imply (3.5).

In the general case let X7, be an independent copy of X, foranyne Nand k=1,...,n. Let
X = Xuk = X, S, Zk 1 Xy and S = ke =Sn =S,

Now prove that condltlons of Theorem 3.1 hold for X7,. Using (2.1) and (2.2), we get

‘Z (x| > 1) < flZP<||Xnk||>é><2yP(|2X|>t) for all >0,
k=1

so {X;,:neN,k=1,...,n} is wm.d. by 2X. Moreover, it follows from ¢, ~ 4, that
Eop(2X])<o0 and E9(|2X|)<oo.

Since {||Sull/y,, 7 € N} is bounded in probability, using (2.1), for every #>0 there exists ¢>0
such that for all n € N

2h>2P(|Sll > 47,) = P(|| S} || > 247,).
Thus {HS:H [V € N} is bounded in probability. Therefore the already known symmetric case
implies

nio:%}’l)P(HS:H>soc(n))<oo for all ¢>0. (4.11)

Now we turn to §,,. {HS;H/)),,, ne N} is bounded in probability as well, so there exists ¢’ >0 such
that

P(HS;H <qy,)>1 (4.12)
Finally, (2.1), a(n)/y, — oo and (4.12) imply that for n € N large enough
P(HSZH >eoc(n))>P(HS;lH <ea(n))P(|| S, || > 2ea(n))
> P([S,]| <q'7)PUISull > 262m) = 3PS, | > 2e4(n)).
This fact and (4.11) imply (3.5). O

Proof of Corollary 3.2. In Theorem 3.1 put a(x) = x'/%, p(x) = M"*W(x"")), 9(x) = x* and Yy =
n'/s. Then

Bk — 1) = (k) — (el — 1)) = M (n) — M"*(n — 1) (4.13)
and fm—1)=0 if k,<m<k,, for all neN. Using relation M'(n)— M°'(n—1) =
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Aﬁjgll) vt'~1dt, it is easy to see that
vk, M (n — 1)< M*(n) — M°(n — 1)<vk2’~" forall v>1, neN, (4.14)
and
vk, M\ ()< M°(n) — M°(n — 1)<vk, forall 0<v<l, neN. (4.15)

Let j € N be such that 2 >#((r — 1) v 1)/(rs — t). Then, using (4.13)~(4.15), we have

o0 .
const. S w200 <00 if 12,

i ﬁ(k,;c —1) <k + 9%)) o g ]
n=1

n Houkn)) const. S n=0/=12 <00, if 0<r<2.

n=1

It is easy to see that the other conditions of Theorem 3.1 are satisfied as well. Thus
2 Bk, — 1 )
Z %P(HS/CMH >¢k!/y<oo forall &>0.
n=1 n

Furthermore, by (4.13)-(4.15), we have f(k, — 1)/k,>const. (M(n))’/z’1 which implies the
statement. [

Proof of Corollary 3.3. In Theorem 3.1 put a(x) = x/*, p(x) = M, (Y(x")), ¥(x) = x* and y, = n'/*.
It is easy to see that the conditions of Theorem 3.1 are satisfied. Thus Theorem 3.1 implies the
statement, because in this case f(k, — 1)/k, = k' % and fm — 1) = 0 if k,<m<k,y,. O

5. Special cases of the main theorem

B is said to be of (Rademacher) type p (0<p<2) if there exists a ¢>0 such that

n
DX
i=1

for every independent B-valued r.v.’s X,..., X, with E||X;|<oo (and EX; =0 if p=1), i=
I,...,n.

The following remark shows that in Theorem 3.1 we can write moment conditions instead of
the boundedness of {HSan/yk”,n e N} if B is of type p.

p n
E <cY EIX| (5.1)
i=1

Remark 5.1. Let B be of type p for some 0<p<2. Let {X,,n € N,k =1,...,k,} be an array of
rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Assume that EX, =0 (k =
1,....k,) when p=1. If E|X|’ <o0 then {HSan/k;/p,n € N} is bounded in probability.

Proof. Using (5.1) and Lemma 4.4, we have

kn
E|[Sy,["<e ) ENXullP <c(1 v p)k,E|XV.
k=1

So {HSanp/k,,,n € N} is bounded in probability. [
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The following corollary is a version of Corollary 4.2 of Hu et al. (1999).

Corollary 5.2. Let B be of type p for some 0<p<2. Let {Xy,n e N,k =1,...,k,} be an array of
rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Letr € R, 0<t<p and M, oy ~
M. IfEX =0 forallne N, k=1,...,k,, EM,(y(|X|")<oo and E| X’ <o0, then

Zk;‘zP(HSan>8k}/t)<oo Sor all  ¢>0.
n=1

Proof. It follows from Remark 5.1 that {HSan/k,I/ P 'n € N} is bounded in probability. Hence
conditions of Corollary 3.3 are satisfied. [

The following three theorems are due to Fazekas (1992). We shall prove that they are special
cases of Theorem 3.1.

Theorem 5.3 (Fazekas, 1992, Theorem 3.1). Let 0<p<2, s=p, rp>s and let B be of type p. Let
{(Xe,ne Nk =1,...,n} be an array of rowwise independent B-valued r.v.’s which is w.m.d. by the
r.v. X. Assume that EX . =0 (k=1,...,n) when p=1. If E|X |’ <oo, then

Zn"_zP(I|Sn||>£n’/s)<oo forall £>0.

n=1

Proof. In Theorem 3.1 put a(x) = X5, p(x) = Hx) =x* and y, =n'/?. Let j e N such that
2 >rp/(rp — s). By Remark 5.1, {||S,||/n'/?,n € N} is bounded in probability. It is easy to see that
the other conditions of Theorem 3.1 hold true as well. [

Theorem 5.4 (Fazekas 1992, Theorem 3.5 and Jain 1975, Theorem 3.3). Let {X,n e Nk =
1,...,n} be an array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let
o, @ € Dy, which are strictly increasing, R, = R, =[0,00) and ¢ ~ A,. Let f(n) = ¢(au(n+ 1)) —
@(a(n)) such that for some ci,c; >0

a<afm+1)<pm foral neN.

Let E (| X|)<o00. Assume that there exists a sequence {7,,n € N} of positive real numbers such that
{I1Sull/y,> 1 € N} is bounded in probability, moreover there exists 6 >0 such that

" 00 _ Ofttog ny A (B00) ) 52
o((n))
Then
) @P(nsnn >eun)<oo forall &>0. (5-3)
n=1

Proof. In Theorem 3.1 put 9 = ¢ and choose j € N such that 2/>2/§. Then, using (5.2) and
1/p(m)<1/c;, we get for some my € N that
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j o
2 B(n) (1 + 90,0\ > B(n) Ft 1
g " ( S(a(n)) ) < const. 4+ const. g . ((ﬂ(n)logn)5/2>

n=my

oo .
< const. + const. Z n~!(log n)")z/ <0

n=my

It follows from (5.2) that const. (log n)5<(p(oc(n))/(p(yn) for ne N large enough, hence
@(a(n))/o(y,) — oo. This fact and ¢ ~ 4, imply that a(n)/y, — oco. Consequently, Theorem 3.1
implies (5.3). O

Theorem 5.5 (Fazekas 1992, Theorem 6.2). Let {X;e,ne N, k=1,...,k,} be an array of
rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let 0<p<2,r=1,t>0and s=p.
Suppose that r>t/p if s>1 while r>t/s if s<1. Assume that

lim sup <oo If r>2.

n
noo M(n—1)
Let M oy ~ Ay and B be of type p. Assume that EX,, =0 (k=1,...,k,) in case p=1. If
EM?W(X|")<oco and E|X|<oo,
then

>£k:/’)<oo for all £>0.

> (M) P8y,

n=1

Proof. Let ¢ = p if s>1 while ¢ = s if s<1. Then rg>t, B is of type ¢ and E|X|?<oo. Hence,
using Remark 5.1, we get that {||Sy, ||/kY%,n € N} is bounded in probability. On the other hand
lim sup,_, . .k,/M(n — 1)<oo implies the boundedness of {M(n)/M(n—1),ne N}. So all
conditions of Corollary 3.2 are satisfied. [

Remark 5.6. Theorem 5.5 can be applied e.g., for k, = d”" and k,, = n?, where d is a fixed positive
integer.
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