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Abstract

A general convergence rate theorem is obtained for arrays of Banach space valued random elements. This
theorem gives a unified approach to prove and extend several known results.
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1. Introduction

Several papers are devoted to the study of convergence rates in the law of large numbers. The
well-known theorem of Baum and Katz (1965) states the following. Let X 1;X 2; . . . be independent
identically distributed random variables with EXk ¼ 0 if EjXkjo1: Let t40; rX1 and 2r4t:
Then EjXkj

to1 if and only ifX1
n¼1

nr�2PðjSnj4enr=tÞo1 for all e40:

Earlier versions of this theorem were obtained by Hsu and Robbins (1947), Erd +os (1949,1950) and
Spitzer (1956). The result was extended to Banach space valued random variables (Jain, 1975;
Woyczyński, 1980), to arrays of random variables (Hu et al., 1989; Gut, 1992). For the recent
progress in this field see Ahmed et al. (2002) and Csörg +o (2003).
ress: tomacs@ektf.hu (T. Tómács).
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Instead of the whole sequence Sn; one can study the subsequence Skn : Most of the papers study
subsequences by methods that are different from the ones used for the whole sequence. Similarly,
papers dealing with arrays of random variables (see Gut, 1992; Fazekas, 1992; Hu et al., 1999)
offer their own method to handle general arrays. The aim of this note is to show that an
appropriate version of the classic result of Jain (1975) on Sn (Theorem 3.3) implies theorems on
Skn for a broad class of kn:
Throughout the paper we study Banach space valued random variables. However, some of our

results are new for real variables, too. In Section 2 we introduce notation. The main results are in
Section 3. Theorem 3.1 is a generalization of Theorem 3.3 of Jain (1975). The idea in Theorem 3.1
is the following. When we apply Hoffmann–Jørgensen’s inequality, we use two different functions
to obtain upper bounds for the two terms in the inequality. The theorem obtained seems to be
difficult, but when we choose appropriate weight functions we can obtain several known theorems
for general arrays like Xn1; . . . ;Xnkn : Corollaries 3.2 and 3.3 are versions of Theorem 6.2 of
Fazekas (1992) and Corollary 4.1 of Hu et al. (1999), respectively. In Section 4 we give the proofs.
In Section 5 we specialize our result for Banach spaces which are of type p. Then we obtain new
proofs for results in Fazekas (1992) and Hu et al. (1999).
2. Notation

Let N be the set of the positive integers, R the set of real numbers, a _ b ¼ maxfa; bg and
a ^ b ¼ minfa; bg; where a; b 2 R: Denote by Rf the range of the function f and by f � g the
composite function of functions f and g.
Let F0 denote the set of functions f : ½0;1Þ ! ½0;1Þ; that are nondecreasing. A function f 2 F0

is said to satisfy the D2-condition (f � D2) if there exists a constant c40; such that f ð2tÞpcf ðtÞ for
all t40: It is clear that f � D2 iff for every fixed k41; there exists a constant c41; such that
f ðktÞpcf ðtÞ for all t40:
Throughout the paper let fkn; n 2 Ng be a strictly increasing sequence of positive integers.

Following Gut (1985), introduce the functions c and Mr with

cðtÞ ¼ Cardfn 2 N: knptg for t40 and cð0Þ ¼ 0;

and

MrðtÞ ¼
X½t�
i¼1

kr�1
i if tX1 and MrðtÞ ¼ kr�1

1 if 0pto1;

where r 2 R; Card A is the cardinality of the set A and ½:� denotes the integer function. Let
M ¼ M2:
Let B be a real separable Banach space with norm :k k and zero element 0: If X is a B-valued

random variable (r.v.) and E Xk ko1 then EX stands for the Bochner integral of X.
X is symmetric if X and �X have same distribution. The symmetrization procedure consists in

assigning to the r.v. X the symmetrized r.v. X � ¼ X � X 0; where X 0 is independent of X and has
the same distribution. Then
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Pð X 0
�� ��otÞPð Xk k42tÞpPð X �k k4tÞp2Pð X � bk k4t=2Þ (2.1)

for all tX0 and b 2 B:
Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of B-valued r.v.’s. It is rowwise independent, if

Xn1; . . . ;Xnkn are independent r.v.’s for any fixed n 2 N: Let Skn ¼
Pkn

k¼1Xnk: If kn ¼ n for all n,
then we denote Skn by Sn: This corresponds to the case of ordinary sequences.

Definition 2.1  (Gut, 1992). We say that the array fXnk; n 2 N; k ¼ 1; . . . ; kng is weakly mean
dominated (w.m.d.) by the r.v. X, if for some g40;

1

kn

Xkn
k¼1

Pð Xnkk k4tÞpgPð Xj j4tÞ for all tX0 and n 2 N: (2.2)

Remark 2.2. If fXnk; n 2 N; k ¼ 1; . . . ; kng is w.m.d. by the r.v. X, then

1

kn

Xkn
k¼1

Pð Xnkk kXtÞpgPð Xj jXtÞ for all t40 and n 2 N: (2.3)

3. A general convergence rate theorem

Our main result is Theorem 3.1. It concerns the case of kn � n : However, its general setup
allows us to apply it for general sequences kn (see Corollaries 3.2, 3.3, 5.2 and Theorem 5.5).

Theorem 3.1. Let fXnk; n 2 N; k ¼ 1; . . . ; ng be an array of rowwise independent B-valued r.v.’s
which is w.m.d. by the r.v. X. Assume that there exists a sequence fgn; n 2 Ng of positive real

numbers such that f Snk k=gn; n 2 Ng is bounded in probability. Let a; W;j 2 F0; and assume that a is
not bounded, W;j � D2; Wc0: Let

bðnÞ ¼ jðaðnþ 1ÞÞ � jðaðnÞÞ; n ¼ 0; 1; 2; . . . :

Assume that

E jð Xj jÞo1; E Wð Xj jÞo1 and lim
n!1

aðnÞ
gn

¼ 1:

Let either

mðnÞ ¼ bðn� 1Þ for all n 2 N (3.1)

or

mðnÞ ¼ bðnÞ for all n 2 N: (3.2)

In case (3.2) assume that there exists a constant c40 such that for n 2 N large enough

cbðnÞpbðn� 1Þ: (3.3)

Let n0 2 N be such that WðaðnÞÞ40 for all nXn0: If there exist j 2 N and r40 such that

X1
n¼n0

mðnÞ
n

rnþ WðgnÞ
WðaðnÞÞ

� �2j

o1; (3.4)

then
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m ðn Þ
n

Pð Snk k4eaðnÞÞo1 for all e40: (3.5)

The following corollary is a generalization of Theorem 6.2 of Fazekas (1992).

Corollary 3.2. Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of rowwise independent B-valued r.v.’s
which is w.m.d. by the r.v. X. Let M � c � D2; r; s; t40; rs4t: Assume that f Skn

�� ��=k1=sn ; n 2 Ng is

bounded in probability. Furthermore, if r42 we assume that fMðnÞ=Mðn� 1Þ; n 2 Ng is bounded. If

EMr=2ðcð Xj jt=rÞÞo1 and E Xj jso1;

then

X1
n¼1

ðMðnÞÞr=2�1Pð Skn

�� ��4ekr=tn Þo1 for all e40:

The following corollary is a version of Corollary 4.1 of Hu et al. (1999).

Corollary 3.3. Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of rowwise independent B-valued r.v.’s
which is w.m.d. by the r.v. X. Let r 2 R; 0otos and Mr � c � D2: Assume that f Skn

�� ��=k1=sn ; n 2 Ng

is bounded in probability. If

EMrðcð Xj jtÞÞo1 and E Xj jso1;

then

X1
n¼1

kr�2
n Pð Skn

�� ��4ek1=tn Þo1 for all e40:

4. Proofs

We start with some preliminary results. The following lemma is a version of Lemma 2.2 of Jain
(1975).

Lemma 4.1. Let X be a r.v., j; a 2 F0; bðnÞ ¼ jðaðnþ 1ÞÞ � jðaðnÞÞ; n ¼ 0; 1; 2; . . . : If

E jð Xj jÞo1; then

X1
n¼1

bðn� 1ÞPð Xj jXaðnÞÞo1:

Proof. With notation Yn ¼ jðaðnÞÞ we have

E jð Xj jÞX
X1
i¼1

YiPðYipjð Xj jÞoYiþ1ÞX
X1
i¼1

Xi
n¼1

bðn� 1ÞPðYipjð Xj jÞoYiþ1Þ

¼
X1
n¼1

bðn� 1Þ
X1
i¼n

PðYipjð Xj jÞoYiþ1ÞX
X1
n¼1

bðn� 1ÞPð Xj jXaðnÞÞ: &

The following lemma is due to Hoffmann–Jørgensen (1974) and Jain (1975).

X1
n¼1
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RW:
Then there exists aX0; so that limx!a�0WðxÞotolimx!aþ0 WðxÞ: (Define limx!0�0 WðxÞ as Wð0Þ:) If
WðaÞot; then

S1

m¼1fy : Wð yÞ4 Wða þ 1= mÞg ¼ fy : W ðy Þ4tg and
S1

m¼1 fy : WðyÞXWðaþ 1=mÞg ¼ fy :
W ðyÞ Xtg: On the other hand, if Wð aÞ 4t; then

T1

m¼1 fy : WðyÞ4Wða� 1=mÞg ¼ fy : WðyÞ4tg andT1

m¼1 fy : WðyÞXWða� 1=mÞg ¼ fy : WðyÞXtg: Hence, using continuity of probability and (4.1) for
t 2 RW ; we have that (4.1) is true in this case as well. If 0pt pWð0Þ or tX sup R W ; then (4.1) is
obvious. Now, applying W � D2; we get that there exists a constant c 41 such that

P Wð Skn

�� ��Þ4ct
� �

pP WðNknÞXt
� �

þ 4P2 Wð Skn

�� ��ÞXt
� �

(4.2)

for all tX0: Integrating with respect to t, we obtain

1

c
E Wð Skn

�� ��Þ pE W ðNknÞ þ 4

Z 1

0

P2 Wð Skn

�� ��Þ4t
� �

dt: (4.3)

Since f Skn

�� ��=gkn ; n 2 Ng is bounded in probability and W � D2; therefore there exist constants
A1; A40 such that

Pð Skn

�� ��XA1gknÞo
1

8c
and WðA1gknÞpAWðgknÞ

for all n 2 N: Hence we have

PðWð Skn

�� ��Þ4AWðgknÞÞo
1

8c
:

Lemma 4.2. Let X 1; . . . ;Xn be B-valued, independent, symmetric r.v.’s and j 2 N: Then there exists

Aj;BjX0; depending only on j, such that

P
Xn
k¼1

Xk

�����
�����43jt

 !
pAjP max

1pkpn
Xkk k4t

� �
þ BjP

2j
Xn
k¼1

Xk

�����
�����4t

 !

for all tX0: ðA1 ¼ 1; B1 ¼ 4Þ

The following lemma is a generalization of Theorem 3.1 of Jain (1975) and Lemma 2.6 of
Fazekas (1992).

Lemma 4.3. Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of rowwise independent, symmetric B-

valued r.v.’s and let fgn; n 2 Ng be a sequence of positive real numbers. Let W 2 F0 and W � D2: If
f Skn

�� ��=gkn ; n 2 Ng is bounded in probability, then there exist constants a; b40 such that

E Wð Skn

�� ��ÞpaE W max
1pkpkn

Xnkk k

� �
þ bWðgknÞ for all n 2 N:

Proof. Let Nkn ¼ max1pkpkn Xnkk k: By W 2 F0 and Lemma 4.2, we have for all xX0 and n 2 N

PðWð Skn

�� ��=3Þ4WðxÞÞpPð Skn

�� ��=34xÞpPðNkn4xÞ þ 4P2ð Skn

�� ��4xÞ

pPðWðNknÞXWðxÞÞ þ 4P2ðWð Skn

�� ��ÞXWðxÞÞ:

Hence

PðWð Skn

�� ��=3Þ4tÞpPðWðNknÞXtÞ þ 4P2ðWð Skn

�� ��ÞXtÞ (4.1)

for all t 2 RW and n 2 N: Now we prove (4.1) for teRW: First assume that t 2 ðWð0Þ; supRWÞ \
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1

8c
PðWð Skn

�� ��Þ4tÞdt

pAWðgknÞ þ
1

8c
E Wð Skn

�� ��Þ: ð4:4Þ

Thus, by (4.3) and (4.4), we get Lemma 4.3. &

The following lemma is a generalization of Lemma 2.1 of Gut (1992) and Lemma 2.7 (b) of
Fazekas (1992).

Lemma 4.4. Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of B-valued r.v.’s which is w.m.d. by the

r.v. X. If W 2 F0 then

1

kn

Xkn
k¼1

E Wð Xnkk kÞpð1 _ gÞE Wð Xj jÞ: (4.5)

Proof. Using W 2 F0 and (2.2), we have for all xX0

1

kn

Xkn
k¼1

PðWð Xnkk kÞ4WðxÞÞp
1

kn

Xkn
k¼1

Pð Xnkk k4x Þpg P ð Xj j4x Þpg P ð Wð Xj jÞXW ðx ÞÞ;

hence we obtain (4.5) for t 2 RW: A standard calculation gives (4.5) for teRW: &

In the proof of Theorem 3.1 we shall apply Lemmas 4.3 and 4.4 for kn � n:

Proof of Theorem 3.1. First assume that Xnk are symmetric. Let e40:Using Lemma 4.2 and (2.2),
we get

Pð Snk k4e3jaðnÞÞpAjgnPð Xj j4eaðnÞÞ þ BjP
2j ð Snk k4eaðnÞÞ: (4.6)

To estimate the second term of (4.6) we can apply W 2 F0; W � D2; Chebyshev’s inequality,
Lemmas 4.3 and 4.4. Thus there exist e0; g0; a; b40 such that for all nXn0

P
1

e
Snk k4aðnÞ

� �
pPðe0Wð Snk kÞXWðaðnÞÞÞ

pe0
E Wð Snk kÞ

WðaðnÞÞ
p

e0

WðaðnÞÞ
ðag0nE Wð Xj jÞ þ bWðgnÞÞ: ð4:7Þ

In formula (4.7) we can choose b such that

b4
a

r
g0E Wð Xj jÞ; (4.8)

where r is from (3.4). Now (4.6)–(4.8) imply that

It follows thatZ 1

0

P2ðWð Skn

�� ��Þ4tÞdtp
Z AWðgkn Þ

0

1dtþ

Z 1

AWðgkn Þ
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mðnÞ
n

Pð Snk k4e3jaðnÞÞpAjg
X1
n¼1

mðnÞPð Xj j4eaðnÞÞ þ const.

þ const.
X1

n¼n0þ1

mðnÞ
n

rnþ WðgnÞ
WðaðnÞÞ

� �2j

: ð4:9Þ

Since j � D2; there exists k40 such that E j Xj j=e
� �

pkE jð Xj jÞo1: Thus, by Lemma 4.1 and
(3.3), there exists n1 2 N such that

14
X1
n¼1

bðn� 1ÞP
Xj j

e
4aðnÞ

� �
Xconst.

X1
n¼n1

mðnÞPð Xj j4eaðnÞÞ: (4.10)

Then (4.9), (4.10) and (3.4) imply (3.5).
In the general case let X 0

nk be an independent copy of Xnk for any n 2 N and k ¼ 1; . . . ; n: Let
X �

nk ¼ Xnk � X 0
nk; S

0
n ¼

Pn
k¼1X

0
nk and S�

n ¼
Pn

k¼1X
�
nk ¼ Sn � S0

n:
Now prove that conditions of Theorem 3.1 hold for X �

nk: Using (2.1) and (2.2), we get

1

n

Xn
k¼1

P X �
nk

�� ��4t
� �

p
2

n

Xn
k¼1

P Xnkk k4
t

2

� �
p2gPð 2Xj j4tÞ for all tX0;

so fX �
nk : n 2 N; k ¼ 1; . . . ; ng is w.m.d. by 2X : Moreover, it follows from j;W � D2 that

E jð 2Xj jÞo1 and E Wð 2Xj jÞo1:
Since f Snk k=gn; n 2 Ng is bounded in probability, using (2.1), for every h40 there exists q40

such that for all n 2 N

2h42Pð Snk k4qgnÞXPð S�
n

�� ��42qgnÞ:

Thus S�
n

�� ��=gn; n 2 N
� 	

is bounded in probability. Therefore the already known symmetric case
impliesX1

n¼1

mðnÞ
n

Pð S�
n

�� ��4eaðnÞÞo1 for all e40: (4.11)

Now we turn to Sn: S0
n

�� ��=gn; n 2 N
� 	

is bounded in probability as well, so there exists q040 such
that

Pð S0
n

�� ��oq0gnÞ4
1
2
: (4.12)

Finally, (2.1), aðnÞ=gn ! 1 and (4.12) imply that for n 2 N large enough

Pð S�
n

�� ��4eaðnÞÞXPð S0
n

�� ��oeaðnÞÞPð Snk k42eaðnÞÞ

XPð S0
n

�� ��oq0gnÞPð Snk k42eaðnÞÞX1
2
Pð Snk k42eaðnÞÞ:

This fact and (4.11) imply (3.5). &

Proof of Corollary 3.2. In Theorem 3.1 put aðxÞ ¼ xr=t; jðxÞ ¼ Mr=2ðcðxt=rÞÞ; WðxÞ ¼ xs and gn ¼
n1=s: Then

bðkn � 1Þ ¼ jðaðknÞÞ � jðaðkn � 1ÞÞ ¼ Mr=2ðnÞ �Mr=2ðn� 1Þ (4.13)

and bðm� 1Þ ¼ 0 if knomoknþ1 for all n 2 N: Using relation MvðnÞ �Mvðn� 1Þ ¼

X1
n¼1
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bðkn � 1Þ

kn

rkn þ WðgknÞ
WðaðknÞÞ

� �2j

p

const.
P1
n¼1

nr�2�ðsr=t�1Þ2jo1; if r42;

const.
P1
n¼1

n�ðsr=t�1Þ2jo1; if 0orp2:

8>>><
>>>:

It is easy to see that the other conditions of Theorem 3.1 are satisfied as well. ThusX1
n¼1

bðkn � 1Þ

kn
Pð Skn

�� ��4ekr=tn Þo1 for all e40:

Furthermore, by (4.13)–(4.15), we have bðkn � 1Þ=knXconst. ðMðnÞÞr=2�1 which implies the
statement. &

Proof of Corollary 3.3. In Theorem 3.1 put aðxÞ ¼ x1=t; jðxÞ ¼ MrðcðxtÞÞ; WðxÞ ¼ xs and gn ¼ n1=s:
It is easy to see that the conditions of Theorem 3.1 are satisfied. Thus Theorem 3.1 implies the
statement, because in this case bðkn � 1Þ=kn ¼ kr�2

n and bðm� 1Þ ¼ 0 if knomoknþ1: &

RMðnÞ

Mðn�1Þ vt
v�1dt; it is easy to see that

vknM
v�1ðn� 1ÞpMvðnÞ �Mvðn� 1Þpvk2v�1

n for all vX1; n 2 N; (4.14)

and

vknM
v�1ðnÞpMvðnÞ �Mvðn� 1Þpvkn for all 0ovp1; n 2 N: (4.15)

Let j 2 N be such that 2j4tððr� 1Þ _ 1Þ=ðrs� tÞ: Then, using (4.13)–(4.15), we have

X1
n¼1
5. Special cases of the main theorem

B is said to be of (Rademacher) type p ð0opp2Þ if there exists a c40 such that

E
Xn
i¼1

Xi

�����
�����
p

pc
Xn
i¼1

E Xik kp (5.1)

for every independent B-valued r.v.’s X 1; . . . ;Xn with E Xik kpo1 (and EXi ¼ 0 if pX1), i ¼
1; . . . ; n:
The following remark shows that in Theorem 3.1 we can write moment conditions instead of

the boundedness of f Skn

�� ��=gkn ; n 2 Ng if B is of type p.

Remark 5.1. Let B be of type p for some 0opp2: Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of
rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Assume that EXnk ¼ 0 ðk ¼

1; . . . ; kn Þ when p X1: If E Xj jp o1 then f S k n
�� ��=k1=pn ; n 2 Ng is bounded in probability.

Proof. Using (5.1) and Lemma 4.4, we have

E Skn

�� ��ppc
Xkn
k¼1

E Xnkk kppcð1 _ gÞknE Xj jp:

So f Skn

�� ��p=kn; n 2 Ng is bounded in probability. &
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n _ jðgnÞ
jðaðnÞÞ

¼ Oððlog nÞ�d
^ ðbðnÞÞ�d

Þ: (5.2)

Then

X1
n¼1

bðnÞ
n

Pð Snk k4eaðnÞÞo1 for all e40: (5.3)

Proof. In Theorem 3.1 put W ¼ j and choose j 2 N such that 2j42=d: Then, using (5.2) and
1=bðnÞp1=c1; we get for some m0 2 N that

The following corollary is a version of Corollary 4.2 of Hu et al. (1999).

Corollary 5.2. Let B be of type p for some 0opp2: Let fXnk; n 2 N; k ¼ 1; . . . ; kng be an array of
rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let r 2 R; 0otop and Mr � c �

D2: If EXnk ¼ 0 for all n 2 N; k ¼ 1; . . . ; kn; EMrðcð Xj jtÞÞo1 and E Xj jpo1; then

X1
n¼1

kr�2
n Pð Skn

�� ��4ek1=tn Þo1 for all e40:

Proof. It follows from Remark 5.1 that f Skn

�� ��=k1=pn ; n 2 Ng is bounded in probability. Hence
conditions of Corollary 3.3 are satisfied. &

The following three theorems are due to Fazekas (1992). We shall prove that they are special
cases of Theorem 3.1.

Theorem 5.3 (Fazekas, 1992, Theorem 3.1 ). Let 0 opp2; s Xp; rp4s and let B be of type p. Let

fXnk; n 2 N; k ¼ 1; . . . ; ng be an array of rowwise independent B-valued r.v.’s which is w.m.d. by the
r.v. X. Assume that EXnk ¼ 0 ðk ¼ 1; . . . ; nÞ when pX1: If E Xj jso1; then

X1
n¼1

nr�2Pð Snk k4enr=sÞo1 for all e40:

Proof. In Theorem 3.1 put aðxÞ ¼ xr=s; jðxÞ ¼ WðxÞ ¼ xs and gn ¼ n1=p: Let j 2 N such that
2j4rp=ðrp� sÞ: By Remark 5.1, f Snk k=n1=p; n 2 Ng is bounded in probability. It is easy to see that
the other conditions of Theorem 3.1 hold true as well. &

Theorem 5.4     ( Fazekas 1992, Theorem 3.5 and Jain 1975, Theorem 3.3).   Let fX nk ; n 2 N; k ¼
1; . . . ; ng be an array of rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let

a;j 2 F0; which are strictly increasing, Ra ¼ R j ¼ ½0;1Þ and j � D 2: Let b ðn Þ ¼ j ða ðn þ 1ÞÞ �
jðaðnÞÞ such that for some c1; c240

c1pc2bðnþ 1ÞpbðnÞ for all n 2 N:

Let E jð Xj jÞo1: Assume that there exists a sequence fgn; n 2 Ng of positive real numbers such that

f Snk k=gn; n 2 Ng is bounded in probability, moreover there exists d40 such that
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X1
n¼1

bðnÞ
n

rnþ WðgnÞ
WðaðnÞÞ

� �2j

pconst.þ const.
X1
n¼m0

bðnÞ
n

rþ 1

ðbðnÞ log nÞd=2

 !2j

pconst.þ const.
X1
n¼m0

n�1ðlog nÞ�d2j�1

o1:

It follows from (5.2) that const: ðlog nÞdpjðaðnÞÞ=jðgnÞ for n 2 N large enough, hence
jðaðnÞÞ=jðgnÞ ! 1: This fact and j � D2 imply that aðnÞ=gn ! 1: Consequently, Theorem 3.1
implies (5.3). &

Theorem 5.5   (Fazekas 1992, Theorem 6.2).  Let f X nk ; n 2 N; k ¼ 1; . . . ; k n g be an array of
rowwise independent B-valued r.v.’s which is w.m.d. by the r.v. X. Let 0opp2; rX1; t40 and sXp:
Suppose that r4t=p if s41 while r4t=s if sp1: Assume that

lim sup
n!1

kn

Mðn� 1Þ
o1 if r42:

Let M � c � D2 and B be of type p. Assume that EXnk ¼ 0 ðk ¼ 1; . . . ; knÞ in case pX1: If

EMr=2ðcð Xj jt=rÞÞo1 and E Xj jso1;

then X1
n¼1

ðMðnÞÞr=2�1Pð Skn

�� ��4ekr=tn Þo1 for all e40:

Proof. Let q ¼ p if s41 while q ¼ s if sp1: Then rq4t; B is of type q and E Xj jqo1: Hence,
using Remark 5.1, we get that f Skn

�� ��=k1=qn ; n 2 Ng is bounded in probability. On the other hand
lim supn!1kn=Mðn� 1Þo1 implies the boundedness of fMðnÞ=Mðn� 1Þ; n 2 Ng: So all
conditions of Corollary 3.2 are satisfied. &

Remark 5.6. Theorem 5.5 can be applied e.g., for kn ¼ dn and kn ¼ nd ; where d is a fixed positive
integer.
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