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O N  T H E  R O S E N T H A L  I N E Q U A L I T Y  F O R  M I X I N G  F I E L D S  

I. Fazekas, 1 A. G. Kukush, 2 and T. T6m~ics 3 UDC 519.21 

A proof of the Rosenthal inequality for tz-mixing random fields is given. The statements and proofs are 
modifications of the corresponding results obtained by Doukhan and Utev. 

1. Introduction and Results 

The Rosenthal inequalities are important tools to prove the consistency of certain estimators for weakly depend- 
ent random processes and fields (see, e.g., [1] ). The first version of such inequalities was proved by Rosenthal [2] 
for independent random variables. The Rosenthal inequalities for mixing sequences were obtained by Utev [3] and 
for mixing fields by Doukhan [4]. However, Doukhan noted that the proof of the interpolation lemma in [3] is "not 
clear" (see [4, p. 27]). Actually, the first inequality in the expression preceding (4.4) in [3] seems to be not valid. 
Therefore, one cannot use Lemma 4.1 from [3], and, thus, the extension of the Rosenthal inequality from positive 
even integer exponents to arbitrary positive real exponents is an open problem. On the other hand, Doukhan [4] 

presented the Rosenthal inequalities for o~-mixing and tp-mixing fields. However, in the opinion of the authors of 

the present paper, there is a gap in the proof of Theorem 1 in [4, p. 29]. 

The aim of the present paper is to give a version of the Rosenthal inequality for cz-mixing fields. The results 

and proofs presented here are slight modifications of the corresponding results presented in [4] and [3]. The authors 
want to summarize what is clear in the abovementioned papers concerning the topic. Similar considerations can be 

made in the tp-mixing case (see also Remark 4 in [4, p. 32]). 

Let (f~, F ,  IP) be a probability space. Random variables are supposed to be defined on (f2, F ,  ? )  Let A 

and B be two t~-algebras in F .  The cz-mixing coefficient is defined as follows: 

cz(A, B) = sup {[~(A)]P(B) - ]P(AB)] : A e A ,  B e  B } .  

The covariance inequality in the cz-mixing case is the following (see, e.g., [4, p. 9] ): 

I cov<X, nl  -< 8 l/'llXllpl I vii 

1 / 1 
r , p , q >  1, • 1 7 7  = 1. 

r p q 

Let I be the set of integer lattice points in R d, d > i .  The space ~ will be considered with the maximum 

norm and the distance generated by this norm. Let { Yt : t e I} be a set of random variables. The cz-mixing coef- 

ficient of Y is 
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C t r ( r , u , v  ) = s u p { o ~ ( F h , F 1 2 ) :  d is tance(I i , I2)  > r,  card(/1)  < u, card(I2)  < v } ,  

where I 1 and 12 are finite subsets in I and Fti = ~ {  Yt: t ~ I i }, i = 1, 2. 

Let T be  a finite set in I. W e  introduce the following notation: 

L( lx ,~ ,  T) = E (EIY, = E IIr, l lL~ ,  
t 6 T  t E T  

D ( h , e , T )  = [ 

L(h, 0, T) 

L(h, e, T) 

max {L(h, e., T), [L(2, e, T)] h/2} 

if O < h < l ,  e>O,  

if l < h < 2 ,  e_>O, 

if 2 < h ,  e>O.  

Let s r and b r denote the number of  points of  I in a sphere with radius r and center in I and in a ball with 

radius r and center in I, respectively: s r = card ( { t: Ilt[] = r } [') I )  and b r = card ({  t: lit I[ < r } D I ) .  Let 

(a) = 8u!(h-u-1)l(h-1)! ~ [O~y(r,u,h-u)]~/(h+e)Sr bh-2 Cu, h _  u 
r= l  

The following theorem is a version of Theorem 1 in [4, p. 26]. The assumptions here are stronger than those in 

[4]. The explicit formulas for the constants are given. 

Theorem 1. Let l >  1 and ~ > O. Let  Yt, t ~ I, be centered random variables with EIY, I < oo, t ~ i .  

Let h be the smallest even integer with h > l. Assume that ,~(a) < oo f o r  u = 1, h - 1 Then there exists -- ~ 'u ,h -u  "'" " " 

a constant K(a  ) such that 

l 

E ~_~ Yt < K(a )D( I ,  ~, 7") 
t E T  

(1) 

for  anyfini te  subset T o f  I. 

R e m a r k  1. K(a  ) does not depend on T but it depends on the mixing coefficients and l, namely, K(a ) = 

n~a) Ct, where 

h - 1  h - 2  

= x § n(h a) 1 + ~ 'u ,h -u  "*u  " * h - u  " 

u=l  u=2 

C l = 2 ( h - l + e ) (  2 h + 2 1 - 1 ) / E ,  

here, we assume that 0 < ~ < l / 2 .  If  l is an even integer, then one can set C l = 1. 

Remark  2. Inequality (1) is always satisfied for 0 < I < 1 if we replace K(~) by 1. 
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Remark  3. The above result is valid in the following, slightly more general, setting: If I is a regular pattern 

in R d, then s r should be replaced by Sr = card ({ t :  r -  1 < [[tll < r } [') I ) ,  i.e., Sr denotes the number of 

points of I in a ring with radius r ,  thickness 1, and center in I. 

Remark 4. For the case d = 1, i.e., for mixing sequences, see [4, p. 26]. 

2. Auxiliary Results and Interpolation Lemma 

Lemma 1. Let  L be a finite subset in a metric space (M, p ). Suppose that the minimal distance o f  two 

nonempty complementary subsets o f  L is r.  Then one can choose two nonempty complementary subsets A and  

B in L such that the distance between A a n d  B is r and there exists a connected graph with edges not 

longer than r and with the set of  vertices A ; the same is true for B.  

Proof. Let s, t e U c L. We say that s is r-connected with t in U if there exists a connected graph with 

edges not longer than r and with vertices in U and, moreover, s and t are vertices of this graph. Let S1 and S 2 

be two nonempty complementary subsets of L such that p (S l , $2) = r. Consider points t 1 ~ S and t 2 ~ S 2 such 

that p (q ,  t2) = r. Let  S} l) c S i be the set of points r-connected with t i in S i, i = 1, 2. We have 

p( {~ l )  U S~I)}, { (S 1 - S~I)) U ($2 - S(1))}) ~ r .  

But r is the maximal distance between the subsets of L and, therefore, either the second subset is empty or the 

distance is r. In the first case, we are done. In the second case, let S1 d) c_ S I - S~ 1) be the set of points r-con- 

nectedwith S(21) in (S 1 - ~l ) )us20)  . The definition of $2 d) is similar. Obviously, S(1) US2d) # 0 .  We now 

consider (S l - Sl 0)) U $2 d) and (S 2 - $2 d)) U ~(1). The distance between these two sets is r .  Moreover, in these 

sets, the number of points r-connected with t 1 in (S 1 - S10)) O $2 (1) or the number of points r-connected with t 2 

in (S 2 - $20)) [3 ~(1) is greater than at the starting situation. Repeating the above procedure, we obtain the required 
result. 

The following lemma is a version of Lemma 2 in [4, p. 29], where it was stated for even integer (a + b) such 

that ( a + b )  > 2. 

Lemma 2. I f  8_> 0, a > 2, and b > 2 are real numbers, then 

D ( a ,  8, T ) D ( b ,  8, T) <_ D(a  + b, 8, T).  

The proof will be based on the H61der inequality: 

1. Let X and Y be real random variables. If p > 1 and q = p / (p - 1 ), then 

Elxrl---Ilxllpll rllq. (2) 

2. If ai, b i ~ R ( i  = 1 . . . . .  n), p > 1, and q = p / (p - 1 ), then 

i=1 i=1 i=1 
(3) 
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Proof .  We set 

Then 

Thus, we get 

and 

L v = L ( v ,  5, T), 

D v = D ( v , & T ) ,  

Xt = Yt L21/2 for t e T, 

14 = ]~ IIx, IIS+8, 
teT 

D v = ~ V(/_..~) v/2 i f  V > 2 ,  

c = a + b .  

o; = t4 v/2 t~ v t~ -v/2 r~/~ = ~ / 2  o~ 

B y  u s i n g  (5) ,  we obtain 

D v = ~ V (/_.~)v/2 

For any a > 2 and b > 2, this equality yields 

/~=1 .  

t4v/2~. 
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for v 2 2, (4) 

(5) 

L ~ v l  for v > 2 .  (6) 

D a D ;  = L a t , ~ , V L a V L ~ , V 1 .  

and  v = 
( 2 + 8 ) ( c - a )  

c - 2  

(a) First, we assume that a > 2. We set 

c + 8  2 + 5  
- -  and q = , we obtain 

U v 

(c + 8)(a - 2) 

c - 2  

Then u + v = a + 8 and, hence, using (2) with p = 

= E l x t l  u+'' <- Ix, I ~ <c+~/~ Ix, I v ~2+~/~  Elx, I a+~ 

This inequality yields 

(7) 
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where 

Z IIx, llg%llx, ll  a, 
t~T 

r - 

ua av  
S -- 

c(a + 8) ' 2 ( a + 8 ) "  

Since 0 < r < a / c < 1, by using (3) with p = 1 / r and q = 1 / ( 1 - r) we obtain from (8) that 

where 

A = Z y 12s/(1-r) 
"~t 12+6 " 

tET 
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(8) 

L; <_ (L'c) r A  l - r ,  

Since s / (  1 - r) > 1, it follows from (5) that A < 1 and, therefore, L* a < (L*) r. Hence, if  L~ > 1, then 

Therefore, since 0 < r < a / c  < 1, we get 

L* a < (L'c) r < (L'c) a/c < L* c if L~ > 1. 

(a ' )  We now concentrate on the case where a > 2 and b > 2. Then relation (9) is valid for b, namely, 

L* b < (L*~) b/c < L* c if L~_> 1. 

These inequalities yield L~ L~ < L c v 1. Therefore, using (7), (9), (10), and (6), we obtain 

O*O~ < (L*rv1) vL*aVL*b = L ~ V l  = O~. 

Hence, using (4), we get the required statement. 

(b) We now assume that a = b = 2 .  Then, by using (7) ,  (5), and (6),  we get 

0 2 0 2  = 1 _< 1 v L ~  = 04 . 

Hence, using (4), we obtain the required statement. 

(c) If a > 2 and b = 2, then relations (5),  (6), and (9) yield 

O~ D~ = D~ ~_ D;. 

Hence, using (4), we obtain the required statement. 

(d) Finally, if b > 2 and a = 2, then the proof is the same as in case (c). 

This completes the proof of Lemma 2. 

The interpolation lemma presented below is a version of Lemma 4.4 in [3] and Lemma 1 in [4, p. 27]. 

L * _ > I .  

(9) 

(lO) 
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Let B be a separable Banach space with norm [[ [[. Let F = { Y-1 . . . . .  Y-~ be a family of  sub-G-algebras of 

the t~-algebra F and let 11 = { 111 . . . . .  11 ~ be a family of centered random variables. The family 11 is called 

(F,  B)-adapted if rl i is B-valued and Fi-measurable. We shall use the following notation: 

n n 

( ) -- M(v,5,11)  = Z m1111~11 ~+~ ~'<~+~) E I111,11~+~, 
i=1 i=1 

I M(v, 5, 1]) 

Q (v,  5,11 ) = [ M(v, 5, 11) v MY/2(2, 5, 11) 

if l < v < 2 ,  

if v > 2 ,  

where a v b = max { a, b }. I {A } denotes the indicator function of the set A. 

L e m m a  3. Assume that, for  some f ixed real constants v > 1, 5 > O, and  c > 1, any  ( F , B )-adapted cen- 

tered family 11 = { rl 1 . . . . .  11n} satisfies the inequality 

E i=~111 i v (_ cQ(v, & 11). (11) 

Weset  t o = 1 v ( v / 2 ) v  ( v - 5 ) .  Then, fo r  any t with t o < t < v and any (F ,B) -adap tedcen tered fami ly  

(P = { ~ 1  . . . . .  ~n), we have 

E i=~l ~Pi t <_ c 2 4 V - I Q (  t, 5, tp). 

Note that c > 1 is a consequence of  the other assumptions. In order to prove the lemma, we require the follow- 
ing known inequalities: 

1. Cp-inequality. If x, y e B and p > 1, then 

I l x + y l l  p < 2p-1 (llxl[ p + IlyllP); (12) 

if 0 < p < 1, then 

and 

II x + y II ' _< II x II p + II y II p- 

2. Let X be a B-valued random variable. If p _> 1, then 

(E Ilxl l)  p _< ~ . ( l lx l l  p) 

If 0 < p _< l, then 

E I I x -  n x [ r  _< 2PE Ilxll p. 

(13) 

(14) 

(15) 
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(~ I lx l l )"-- -  E I lxl l  p 

and 

where E X is the Bochner integral. 

E IIx- Exlr --- 2 ( E  Ilxl l )",  

3. I f  X is a B-valued random variable and 0 < q <p, then 

IlXllq -< I l x l l .  

where IlXllq = ( E  Ilxllq) lie 

4.  I f  a i E ~ ( i  = 1 . . . . .  n )  and p > 1, then  
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(16) 

(17) 

( 1 8 )  

) lail" <- [ail �9 ( 1 9 )  
i = l  i = l  

P r o o f  o f  L e m m a  3. Let q0 = { (1) 1 . . . . .  q%} be a centered ( F ,  B)-adapted family of  random variables and let 

t o _< t _< v b e  a fixed constant. We set 

Q = Q( t ,  8, q~), 

y = Q1/t, 

L = ~/I{ll~0ill  _< y}, i = 1  . . . . .  n, 

Yi = q ~ i { { l [ ~ / [ [  > y } ,  i = l  . . . .  , n , .  

1~i = Yi - EYi ,  i=  l . . . . .  n, 

q = { q l  . . . . .  q . } ,  

~lli  = T i - E T  i ,  i =  I . . . . .  n ,  

= { ~ 1  . . . . .  ~ . } ,  

~; = z ( l l n / l l  '/v - E [[rlillt/v), where z ~  B, Ilzll = 1, i =  1 . . . . .  n, 

= { ~ ,  . . . . .  ~ . } .  

Then q i  + ~ i  = q~ and t_> 1 and, hence, relation (12)yields 



312 

E i=~l(~i t < 2 t-1 

Since t < 1 and v >__ 1, relations (13) and (12) yield 
V 

E i=~l lli t 
II'/V) v 

< E ]v 

We set 

(E i~il t + E  

L FAZEKAS, A. G. KUKUSH, AND T. T6MXCS 

i=~l II/i t ) .  (20) 

= E (l lnill  " v  - ~ l lni l l  t /v) + EIIn/ll  , /v 
i=1 i=1 

) 

(~ ,,, )v V = cQ(v, 5, 9) and W -- E Tli t/V . 

Since ~ is centered and (F, B)-adapted, the last inequality and (11) yield 

Tli t E ~ < 2v- l (V+ W). (21) 
i=1 

Since ~ is centered and (F, B)-adapted and v / t > 1, by using (14) and (11) we get 

where U = (c Q(v, 5, ~))t/v. Then (20), (21), and (22) yield 

i=~l t~i t E < 2 t - l u  + 2t+V-2v + 2t+V-2w. (23) 

We thus have to estimate the terms U, V, and W. 

(U) We set u = v(t+5)/ t(v+~).  Then u> 1 and, furthermore, v+i5 > 1. Hence, relations (15)and (14) 

yield 

EIIv / I [  ~+~ _< 2 ~ + s E I I r i l l  ~+~ _< 2~+~(EllTil["("+8))l/". 
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Thus, 

We have 

M(v, 8, V) -< 
n 

Z (2"+~(NITill"("+~>)l/u)"/("+~) 
i=1 

n 

2" E (EII77/ll"r "/ur 
i=1 

i{ l l~/ l l  _< y}ll~o/ll.~.+a~-~,+a> _< yU(V+a)-(t+8) 

because u ( v + 8 ) -  ( t + 8 )  > 0. Hence, 

(24) 

EIl ll" V+ > = E(ll~ill'+~i{ll~oill_ y}ll~oill .<"+a~-<'+a)) < a(t+a>(./,-1)/,Ell~illt+~. 

Using this inequality and (24), we get 

M(v ,8 ,  V) < 2V QV/t-l M(t, 8,~p) < 2V Q v/t. (25) 

(a) Assume that v < 2. Then relation (25) yields 

Q(v, 8, ~g) = M(v,  8, tg) < 2 v QV/t. 

(b) If t < 2 _< v, then relation (25) yields 

MV/2(2,8,~1/) _< ( 22 Q2/t) v/2 = 2V Q v/t, 

whence 

l M(v, 8, ~) < 2 v QV/t, 
Q ( v , 8 , ~ )  = max MV/2(2,8,~)  < 2VQ v/t. 

(c) Assume that 2 < t. Then, by virtue of (15) and the inequality II ~ II <- II (pill, we have 

n 2 + 8 \ 2 / ( 2 + 8  ) 
M(2,(5, V) = ~ ,  (~-I1~ - E~I  ) 

i=1 

n 

< 4 ~ (EII~II2+~) 2/<2+~> 
i=1 

< 4M(2 ,  8, 9)  < 4 Q2/t. 

This inequality and (25) yield 

M(v,  8, W) < 2 v QV/,, 
Q(v,8,  V) = max Mv/2(2,8, W)<(4QZ/t) v/2 =2VQ v/t. 

Cases (a), (b), and (c) imply that 

Q(v ,  8, ~ )  _< 2 v QV/t 
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for every 1 < t < v, whence 

U <- (c2VQV/t) tlv = ct/V2tQ. 
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(26) 

(V) Inequality (15) yields 

E i1 ,11 = E INill '/~ - E I N i l l  '/v ~+s <_ 2~+~El lr l / l l  '(~§ (27) 

This inequality, (18), (15), and II ri II -- II'p ll yield 

n n 

M(V, 8, 9) < 2v Z IIn/ll',(~+8)/~ -- 2v Z Ilnill~+~ 
i=1 i=1 

n 

2v+t Z (Ell~ll,+~)t/(,+~) <_ 2V+tM(t, 8,(p) < 2V+tQ. 
i=i 

(28) 

(a) Assume that v _< 2. Then (28) yields 

Q(v,8 ,  ~) = M(v,  8,~) < 2V+tQ. 

(b) Assume that t<  2 < v.  By virtue of (27) and (15), we have 

n n 

M(2, 8, 9) < 4 ~ (EINillt(2+~)/v) 2/(2+~) <_ 4 l+t/v ~ 
i=1 i=1 

(29) 

where we have used the fact that t > v / 2. We now have 

I { II q~ill > y}ll,aill '(2+~)/~-('+~) <- yt(2+~)/v-(t+8) 

because t(2 + 8 ) /v  - (t + 8) < 0. Therefore, relation (29) yields 

M(2, 8, ~) < 4 l+t/v Q2((2+~)/v-(t+8)/t)/(2+B) ~ ((EIl~,ll,+,)t/(,+~))2('+~)/'(2+~). 
i=1 

Hence, by using (19), we get 

M(2, 8, g) < 4 l+t/v Q2((2+8)/v-(t+8)/t)/(2+6) (M(t, 8, ~p))2(t+6)/t(2+~) < 41 +t/v Q21V. 

By using this inequality and (28), we obtain 

Q(v, 8, ~) = max 
M(v, 8,~) < 2V+tQ, 

MV/2(2,8,~) < (41+t/VQ2/V)V/2 = 2V+tQ. 
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(C) Assume that 2 < t. Note that (29) is valid in this case and, hence, 

315 

M(2,  ~5, ~) < 41+t/V o2/V-2/t M(2, 8, tp) < 41+t/V Q2/V-2/t Q 2/t = 41+t/V a 2/v. 

(Here, we have used the fact that I { II ~~ > Y} II ~;11 '(2+*)j~-(2+~) <_ yt(2+~)/v-(2+~) and the definition of Q.) 

By using the previous inequality and (28), we get 

M(v, 8, ~) < 2V+tQ, 

O(v, 6, ~) = max MY/2( 2, 6,~) < (41+t/VQ2/V) v/2 = 2v+to. 

Cases (a), (b) and (c) imply that 

a ( v ,  8, ~) _< 2V+ta 

for every 1 < t < v,  whence 

(w) By using (16) and (17), we get 

V < c2V+tQ. (30) 

n n n 

EIIn/II "v - E (E I I~  - Er~ll) "~  -< 2t/v E (EIIr~ll) "~ .  
i=1 i=1 i=1 

Furthermore, we have I { II q)ill > Y } II q)i II 1-~ -< y l-v, whence 

n 

E EIIn;ll//v - 
i = 1  

n 

2t/v al/v-1 E I1~0i11% �9 
i=1 

Since t + 6 > v, we can apply (18). As a result, we get 

t/  

Eiin/ll,/V _< 2 , v  Q1/V-1M(t, a, r < 2 t/v Ql/V. 
i=1 

ThUS, 

W < 2tQ. 

Finally, relations (23), (26), (30), and (31) yield 

i=~l (Pit E < 2 t - l (c t /V2tQ + 2V-lc2V+tQ + 2v-1 2tQ) < c24V-1Q. 

(31) 

This completes the proof of Lemma 3. 



316 L FAZEKAS, A. G. KUKUSn, AND T. TOMACS 

Corollary 1. Assume that, for  some fixed real constants v > 1, 5 > 0, and  c > 1 and any ( F ,  B )-adapted 

centered family rl = {rl 1 . . . . .  tin}, relation (11) is satisfied. Then, f o r  any t such that 1 < t < v and any 

( F , B )-adapted centered family  (p = {91 . . . . .  (P n} , we have 

E i=~l (Pit <_ CQ(t ,  5, (p), 

where C = c 2  (v-t+5)(2v+2t-1)/5 if  t> 25. 

Proof. According to Lemma 3, we can decrease the exponent in each step by 5. 

3. Proof of Theorem 1 

Lemma 4. Let  T be a finite subset in I, let h be a fixed positive integer, and let ~ > O. Le t  Yt, t ~ T, 

be centered random variables such that E I Yt I h+~ < oo, t e T. Let 

Ah(T) = ~ IE(Yt~'"Yth)l, 
,lET h 

where x = { t 1 . . . . .  th} E T h. Then 

Ah(T)  < H (a) D(h, ~, T ) .  (32) 

Proof. We omit the superscript (or). We shall prove that, for any positive integer h, we have 

h-1 ) h-2 ( ) 
Ah(T) < 1 + u~=l Cu, h_ u L(h,E,T) + ~,  h u=2 U Au(T)Ah-u(T)" (33) 

Here, 

h-I 
Z ( )  =o 
u=l 

for h = 1 and 

h-2 
,~, (.) = o  
u=2 

for h = 1, 2, 3. The random variables Yt have expectation zero and, therefore, AI (T) = 0. Moreover ,  we shall 

prove 

A2(T ) < (1 + Cl ,1)L(2,  e, T'). (34) 
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We have 

h - I  o o  

Ah(T) <- E IEr/I + E E E E IEr~ r.l, 
t~T u = l  r = l  ~ r I 

(35) 

where ~ = {t 1 . . . . .  tu} ~ T u 1] = { t u +  1 . . . . .  th} ~ Th-U Y~ = Yt, "" Ytu '  Yrl = Yt,+l "'" Yth' and E ~  E ,  

denotes summation over all ~ = { t 1 . . . . .  6 }  ~ Tu and rl = { tu+ 1 . . . . .  th} E T h-u such that the distance between 

the sets { t 1 . . . . .  tu} and { tu+ 1 . . . . .  th} is r, i.e., the maximal distance between complementary pairs of nonempty 

subsets of { t 1 . . . . .  th}. Note that every { t 1 . . . . .  th} E T h should appear on the right hand side of (35), i.e., we take 

into account the order of components of x. By using the covariance inequality, we get 

I E r~ Y.I -< ]E r~llE Y.I + 8[ar(r,u,h-u)l~ Y. II0, 

where 

e h + e  h + e  
- , v = - - ,  ~ -  . 

P h + e  u h - u  

By using the H/51der inequality, we obtain 

(36) 

= = ~,A..-,.I-I IIr,,llh+~. (37) 
i=1  i=1 

By virtue of relation (37), the inequality for arithmetic and geometric means, and Lemma 1, we now get 

u h 
< I1 h )l/h h ~l/h E EIIr~llvllr.ll. E ~ l~ (llYt/,,h+c II (lit,, - -  h + ~ /  

rl ~ 11 i=1 i = u + l  

_< 1 ~ ~ E IlYtillhh+~ + E (llY~llhh'+~ 
i=1 i = u + l  

<-- E srbh-2u!(h  u - l ) ! ( h -  ' h - 1).llEIIh+~. (38) 
t~T 

To explain the last inequality, we note that, for any fixed s E T, we can choose the other u - 1 members of ~ in at 

most (u - 1)! b u-1 ways, the point closest to rl in at most u ways, a point located at a distance r from the point 

considered in at most s r ways, and the other h - u - 1 points in r I in at most (h - u - 1)! bhr -u - l  ways. More- 

h ! .  
over, the factor (h - 1 ) ! = - -  is explained by the different orders of h elements. On the other hand, we have 

h 

r  

E I I IEr~ l lEr~ l  (h < u ) A u ( T ) A h _ u ( T ) .  
r = l  ~ r 1 

By virtue of (35), (36), (39), and (38), we now get 

(39) 
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h-1 h ~  h-1 y. h 

ah(T) <" tETZ IEv?I + U ] Au(T)Ah-u(T) + u=ls~T E Cu, h-.ll sll +  

__< u~_l ( Au(T)Ah_u(T)+ 1 +  ~ L(h, Iz, T), 
_ U u=l 

which yields (33). In the simple case h = 2, the above arguments give (34). In view of  Lemma 2, relation (33) 
yields (32). 

Proof o f  Theorem 1. If  h is an even positive integer, then 

This and Lemma 4 yield (1) for even I. For arbitrary l, one can use Corollary 1. 
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